US009430564B2

a2 United States Patent

Ahuja et al.

US 9,430,564 B2
*Aug. 30, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)
")

@
(22)
(65)

(63)

(1)

(52)

(58)

SYSTEM AND METHOD FOR PROVIDING
DATA PROTECTION WORKFLOWS IN A
NETWORK ENVIRONMENT

Applicant: McAfee, Inc., Santa Clara, CA (US)

Inventors: Ratinder Paul Singh Ahuja, Saratoga,
CA (US); Bimalesh Jha, Maharashtra
(IN); Nitin Maini, Maharashtra (IN);
Sujata Patel, Maharashtra (IN); Ankit
R. Jain, Madhya Pradesh (IN);
Damodar K. Hegde, Cupertino, CA
(US); Rajaram V. Nanganure,
Sunnyvale, CA (US); Avinash Vishnu
Pawar, Maharashtra (IN)

Assignee: McAfee, Inc., Santa Clara, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 177 days.
This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/157,130

Filed: Jan. 16, 2014

Prior Publication Data

US 2014/0164314 Al Jun. 12, 2014

Related U.S. Application Data
Continuation of application No. 13/338,159, filed on
Dec. 27, 2011, now Pat. No. 8,700,561, which is a

continuation of application No. 13/337,737, filed on
Dec. 27, 2011, now abandoned.

Int. CL.

GO6F 17/30 (2006.01)

HO4L 29/06 (2006.01)

U.S. CL

CPC ... GO6F 17/30713 (2013.01); GO6F 17/30011

(2013.01); HO4L 63/20 (2013.01)
Field of Classification Search
CPC ..o GOGF 17/30554; GOGF 17/30705;
GOGF 17/30115; GOGF 17/30713; GOGF
17/30011; HOAL 63/20
See application file for complete search history.

CREATEREFINE
TASK DEFINITION OR
SEARCH DEFNITION

(56) References Cited
U.S. PATENT DOCUMENTS

4,286,255 A
4,710,957 A

8/1981 Siy
12/1987 Bocci et al.

(Continued)

FOREIGN PATENT DOCUMENTS

EP
KR

2499806
1020140041391

9/2012
4/2014

(Continued)
OTHER PUBLICATIONS

English Translation of the Notice of Preliminary Rejection, KIPO
Office Action Mailing Date Oct. 8, 2014 Office Action Summary, 3
pages.

(Continued)

Primary Examiner — Shiow-Jy Fan
(74) Attorney, Agent, or Firm — Patent Capital Group

(57) ABSTRACT

A method is provided in one example and includes receiving
first sets of metadata elements representing an inventory of
objects in a data storage location of a network environment
and presenting an inventory view of the objects to a user.
The inventory view includes a first summary of the inven-
tory objects. The method further includes receiving a request
from the user to manipulate the inventory view based on a
first selected dimension group and presenting to the user a
manipulated inventory view that includes a second summary
of a first subset of the inventory objects. In more specific
embodiments, the method includes receiving a request from
the user to perform a protection task on objects of the first
subset and initiating the protection task. The protection task
includes one of applying a remediation policy to the objects
of the first subset and registering the objects of the first
subset.

17 Claims, 37 Drawing Sheets

*C [warionr

CASGFCATION

\WENVQRV 920 CLASS:F\mmN
K START

REMEDIATION
830 REMEDW\UM

o |921\4 SARABFETS |

ns ®
3

i1

922/{ cussroRn |

960 ‘ cussReRoN I\Qaz

2]
CONIETSENRE m oomEms\ewuazI:@

CENTRAL
230 DATABASE

/{ RENEDIATION
aormon_|[FReoRTor INC\DENISLIS'I 762

73 FLE 720
SYSTEM
INOEX OBJECT STORE
HOOULE MODULE

US 9,430,564 B2

Page 2

(56)

5,249,289
5,465,299
5,479,654
5,497,489
5,542,090
5,557,747
5,577,249
5,623,652
5,768,578
5,781,629
5,787,232
5,794,052
5,813,009
5,873,081
5,924,096
5,937,422
5,943,670
5,987,610
5,995,111
6,026,411
6,073,142
6,078,953
6,094,531
6,108,697
6,122,379
6,161,102
6,175,867
6,192,472
6,243,091
6,243,720
6,278,992
6,292,810
6,336,186
6,343,376
6,356,885
6,363,488
6,389,405
6,389,419
6,408,294
6,408,301
6,411,952
6,457,017
6,460,050
6,493,761
6,499,105
6,502,091
6,515,681
6,516,320
6,523,026
6,539,024
6,556,964
6,556,983
6,571,275
6,584,458
6,598,033
6,629,097
6,662,176
6,665,662
6,675,159
6,691,209
6,754,647
6,757,646
6,771,595
6,772,214
6,785,815
6,804,627
6,820,082
6,857,011
6,937,257
6,950,864
6,976,053
6,978,297
6,978,367
7,007,020
7,020,654

References Cited

U.S. PATENT DOCUMENTS

0 3 e e 0 > B B 0 2 0 B B B B 0 e >

9/1993
11/1995
12/1995

3/1996

7/1996

9/1996
11/1996

4/1997

6/1998

7/1998

7/1998

8/1998

9/1998

2/1999

7/1999

8/1999

8/1999
11/1999
11/1999

2/2000

6/2000

6/2000

7/2000

8/2000

9/2000
12/2000

1/2001

2/2001

6/2001

6/2001

8/2001

9/2001

1/2002

1/2002

3/2002

3/2002

5/2002

5/2002

6/2002

6/2002

6/2002

9/2002
10/2002
12/2002
12/2002
12/2002

2/2003

2/2003

2/2003

3/2003

4/2003

4/2003

5/2003

6/2003

7/2003

9/2003
12/2003
12/2003

1/2004

2/2004

6/2004

6/2004

8/2004

8/2004

8/2004
10/2004
11/2004

2/2005

8/2005

9/2005
12/2005
12/2005
12/2005

2/2006

3/2006

Thamm et al.
Matsumoto et al.
Squibb

Menne
Henderson et al.
Rogers et al.
Califano

Vora et al.
Kirk

Haber et al.
Greiner et al.
Harding
Johnson et al.
Harel

Draper et al.
Nelson et al.
Prager
Franczek et al.
Morioka et al.
Delp

Geiger et al.
Vaid et al.
Allison et al.
Raymond et al.
Barbir
Yanagilhara et al.
Taghadoss
Garay et al.
Berstis

Munter et al.
Curtis et al.
Richards

Dyksterhouse et al.

Saxe et al.
Ross et al.
Ginter et al.
Oatman et al.
Wong et al.
Getchius et al.
Patton et al.
Bharat et al.
Watkins et al.
Pace et al.
Baker et al.
Yoshiura et al.
Chundi et al.
Knight

Odom et al.
Gillis

Janoska et al.
Haug et al.
Altschuler et al.
Dong et al.
Millett et al.
Ross et al.
Keith

Brunet et al.
Kirkwood et al.
Lin et al.
O’Connell
Tackett et al.
Marchisio
Gilbert et al.
McClain et al.
Serret-Avila et al.

Marokhovsky et al.

Cook et al.
Reinke
Dunlavey
Tsuchiya
Tripp et al.
Piersol
Hind et al.
Chen et al.
Najmi

7,020,661
7,062,572
7,062,705
7,072,967
7,082,443
7,093,288
7,103,607
7,130,587
7,133,400
7,139,973
7,143,109
7,158,983
7,165,175
7,171,662
7,181,769
7,185,073
7,185,192
7,188,173
7,194,483
7,219,131
7,219,134
7,243,120
7,246,236
7,254,562
7,254,632
7,266,845
7,272,724
7,277,957
7,290,048
7,293,067
7,293,238
7,296,011
7,296,070
7,296,088
7,296,232
7,299,277
7,299,489
7,373,500
7,424,744
7,426,181
7,434,058
7,467,202
7,477,780
7,483,916
7,493,659
7,505,463
7,506,055
7,506,155
7,509,677
7,516,492
7,539,683
7,551,629
7,577,154
7,581,059
7,596,571
7,599,844
7,657,104
7,664,083
7,685,254
7,689,614
7,730,011
7,739,080
7,760,730
7,760,769
7,774,604
7,801,852
7,814,327
7,818,326
7,844,582
7,849,065
7,886,359
7,899,828
7,907,608
7,921,072
7,926,099
7,930,540
7,949,849
7,958,227
7,962,591

Bl
Bl
Bl
Bl
Bl
Bl
Bl
B2
Bl
Bl
B2
B2
Bl
Bl
Bl
Bl
Bl
B2
Bl
B2
B2
B2
B2
B2
B2
B2
B2
B2
Bl
Bl
Bl
B2
B2
Bl
Bl
Bl
Bl
B2
Bl
Bl
B2
B2
B2
B2
Bl
B2
B2
Bl
B2
Bl
Bl
B2
Bl
B2
B2
B2
B2
Bl
B2
B2
Bl
Bl
B2
Bl
B2
B2
B2
B2
Bl
B2
B2
B2
B2
B2
Bl
B2
B2
B2
B2

3/2006
6/2006
6/2006
7/2006
7/2006
8/2006
9/2006
10/2006
11/2006
11/2006
11/2006
1/2007
1/2007
1/2007
2/2007
2/2007
2/2007
3/2007
3/2007
5/2007
5/2007
7/2007
7/2007
8/2007
8/2007
9/2007
9/2007
10/2007
10/2007
11/2007
11/2007
11/2007
11/2007
11/2007
11/2007
11/2007
11/2007
5/2008
9/2008
9/2008
10/2008
12/2008
1/2009
1/2009
2/2009
3/2009
3/2009
3/2009
3/2009
4/2009
5/2009
6/2009
8/2009
8/2009
9/2009
10/2009
2/2010
2/2010
3/2010
3/2010
6/2010
6/2010
7/2010
7/2010
8/2010
9/2010
10/2010
10/2010
11/2010
12/2010
2/2011
3/2011
3/2011
4/2011
4/2011
4/2011
5/2011
6/2011
6/2011

Cruanes et al.
Hampton
Kirkwood et al.
Saulpaugh et al.
Ashby

Hydrie et al.
Kirkwood et al.
Hikokubo et al.
Henderson et al.
Kirkwood et al.
Nagral et al.
Willse et al.
Kollmyer et al.
Misra et al.
Keanini et al.
Gai et al.

Kahn

Anderson et al.
Mohan et al.
Banister et al.
Takeshima et al.
Massey

Stirbu

Hsu et al.

Zeira et al.
Hypponen
Tarbotton et al.
Rowley et al.
Barnett et al.
Maki et al.
Brook et al.
Chaudhuri et al.
Sweeney et al.
Padmanabhan et al.
Burdick et al.
Moran et al.
Branigan et al.
Ramelson et al.
Wu et al.

Feroz et al.
Ahuja et al.
Savchuk
Boncyk et al.
Lowe et al.

Wu et al.
Schuba et al.
McClain et al.
Stewart et al.
Saurabh et al.
Nisbet et al.
Satoh et al.
Chen et al.
Yung et al.
Gupta et al.
Sifry

King et al.
Deninger et al.
Cermak et al.
Pandya

de la Iglesia et al.
Deninger et al.
Beck et al.
Goldschmidt et al.
Lovett et al.
Lowe et al.
Wong et al.
Ahuja et al.
Deninger et al.
Arbilla et al.
Kamani et al.
Jones et al.

de la Iglesia et al.
Liu et al.
Bohannon et al.
Chakravarty et al.
Ahuja et al.
Lowe et al.
Ahuja et al.
Deninger et al.

US 9,430,564 B2

Page 3
(56) References Cited 2003/0093678 Al 5/2003 Bowe et al.
2003/0099243 Al 5/2003 Oh et al.
U.S. PATENT DOCUMENTS 2003/0105716 Al 6/2003 Sutton et al.
2003/0105739 Al 6/2003 Essafi et al.
7,979,524 B2 7/2011 Dieberger et al. 2003/0105854 Al 6/2003 Thorsteinsson et al.
7,984,175 B2 7/2011 de la Iglesia et al. 2003/0131116 Al 7/2003 Jain et al.
7,996,373 Bl 8/2011 Zoppas et al. 2003/0135612 Al 7/2003 Huntington
8,005,863 B2 8/2011 de la Iglesia et al. 2003/0167392 Al 9/2003 Fransdonk
8,010,689 B2 8/2011 Deninger et al. 2003/0185220 Al 10/2003 Valenci
8.046.372 Bl 10/2011 Thirumalal 2003/0196081 Al 10/2003 Savarda et al.
8055.601 B2 11/2011 Pandya 2003/0204741 Al 10/2003 Schoen et al.
8,056,130 B1 11/2011 Njemanze et al. 2003/0210694 Al 11/2003 Jayaraman et al.
8,065,739 Bl 11/2011 Bruening et al. 2003/0221101 Al 11/2003 Micali
8,166,307 B2 4/2012 Ahuja et al. 2003/0225796 Al 12/2003 Matsubara
8,176,049 B2 5/2012 Deninger et al. 2003/0225841 Al 12/2003 Song et al.
8,200,026 B2 6/2012 Deninger et al. 2003/0231632 Al 12/2003 Haeberlen
8,205,242 B2 6/2012 Liu et al. 2003/0233411 A1 12/2003 Parry et al.
8,205,244 B2 6/2012 Nightingale et al. 2004/0001498 Al 1/2004 Chen et al.
8.261.347 B2 9/2012 Hrabik et al. 2004/0003005 Al 1/2004 Chaudhuri et al.
8271794 B2 9/2012 Lowe et al. 2004/0010484 Al 1/2004 Foulger et al.
8286253 Bl 10/2012 Lu et al. 2004/0015579 Al 1/2004 Cooper et al.
8,301,635 B2 10/2012 de la Iglesia et al. 2004/0036716 Al 2/2004 Jordahl
8,307,007 B2 11/2012 de la Iglesia et al. 2004/0054779 Al 3/2004 Ta_keshlma et al.
8,307,206 B2 11/2012 Ahuja et al. 2004/0059736 Al 3/2004 Willse et al.
8,341,734 Bl 12/2012 Hernacki et al. 2004/0059920 Al 3/2004 Godwin
8,463,800 B2 6/2013 Deninger et al. 2004/0064537 Al 4/2004 Anderson et al.
8,473,442 Bl 6/2013 Deninger et al. 2004/0071164 Al 4/2004 Baum
8,504,537 B2 8/2013 de la Iglesia et al. 2004/0093323 Al 5/2004 Bluhm et al.
8,521,757 Bl 8/2013 Nanda et al. 2004/0111406 Al 6/2004 Udeshi et al.
8,560,534 B2 10/2013 Lowe et al. 2004/0111678 Al 6/2004 Hara
8,601,537 B2 12/2013 Lu et al. 2004/0114518 Al 6/2004 MacFaden et al.
8,612,570 B1* 12/2013 Nair woooocerrreee. HO4L 41/5003 2004/0117414 Al 6/2004 Braun et al.
709/224 2004/0120325 Al 6/2004 Ayres
8,645,397 Bl 2/2014 Koudas et al. 2004/0122863 Al 6/2004 Sidman
8,656,039 B2 2/2014 de la Iglesia et al. 2004/0122936 Al 6/2004 Mizelle et al.
8,667,121 B2 3/2014 Ahuja et al. 2004/0139061 Al 7/2004 Colossi GO6F 17/30592
8,683,035 B2 3/2014 Ahuja et al. 2004/0139120 Al 7/2004 Clark et al.
8,700,561 B2 4/2014 Ahuja et al. 2004/0143598 Al 7/2004 Drucker GO6F 17/30011
8,706,709 B2 4/2014 Ahuja et al. 2004/0181513 Al 9/2004 Henderson et al.
8.707.008 B2 4/2014 Lowe et al. 2004/0181690 Al 9/2004 Rothermel et al.
8.730.955 B2 5/2014 Liu et al. 2004/0193594 Al 9/2004 Moore et al.
8,762,386 B2 6/2014 de la Iglesia et al. 2004/0194141 Al 9/2004 Sanders
8,806,615 B2 8/2014 Ahuja et al. 2004/0196970 A1 10/2004 Cole
8,850,591 B2 9/2014 Ahuja et al. 2004/0205457 Al 10/2004 Bent et al.
8,918,359 B2 12/2014 Ahuja et al. 2004/0215612 Al 10/2004 Brody
9,092,471 B2 7/2015 de la Iglesia et al. 2004/0215626 Al* 10/2004 Colossi GOGF 17/30312
9,094,338 B2 7/2015 Ahuja et al. 2004/0220944 Al 11/2004 Behrens et al.
9,195,937 B2 11/2015 Deninger et al. 2004/0225645 Al 11/2004 Rowney et al.
2001/0010717 Al 82001 Goto et al. 2004/0230572 Al 11/2004 Omoigui
2001/0013024 Al 8/2001 Takahashi et al. 2004/0230891 Al 11/2004 Pravetz et al.
2001/0032310 Al 10/2001 Corella 2004/0249781 Al 12/2004 Anderson
2001/0037324 A1 11/2001 Agrawal et al. 2004/0267753 Al 12/2004 Hoche
2001/0046230 A1 11/2001 Rojas 2005/0004911 Al 1/2005 Goldberg et al.
2002/0032677 Al 3/2002 Morgenthaler et al. 2005/0021715 Al 1/2005 Dugatkin et al.
2002/0032772 Al 3/2002 Olstad et al. 2005/0021743 Al 1/2005 Fleig et al.
2002/0046221 Al 4/2002 Wallace et al. 2005/0022114 Al 1/2005 Shanahan et al.
2002/0052896 Al 5/2002 Streit et al. 2005/0027881 Al 2/2005 Figueira et al.
2002/0065956 Al 5/2002 Yagawa et al. 2005/0033726 Al 2/2005 Wu et al.
2002/0078355 Al 6/2002 Samar 2005/0033747 Al 2/2005 Wittkotter
2002/0091579 Al 7/2002 Yehia et al. 2005/0033803 Al 2/2005 Vleet et al.
2002/0103799 Al 82002 Bradford et al. 2005/0038788 Al 2/2005 Dettinger et al.
2002/0103876 Al 82002 Chatani et al. 2005/0038809 Al 2/2005 Abajian et al.
2002/0107843 Al 8/2002 Bicbesheimer et al. 2005/0044289 Al 2/2005 Hendel et al.
2002/0116124 Al 8/2002 Garin et al. 2005/0050028 Al 3/2005 Rose et al.
2002/0116721 Al 82002 Dobes et al. 2005/0050205 AL~ 3/2005 Gordy et al.
2002/0126673 Al 9/2002 Dagli et al. 2005/0055327 Al 3/2005 Agrawal et al.
2002/0128903 Al 9/2002 Kernahan 2005/0055399 Al 3/2005 Savchuk
2002/0129140 Al 9/2002 Peled et al. 2005/0075103 Al 4/2005 Hikokubo et al.
2002/0159447 Al 10/2002 Carey et al. 2005/0086252 Al 4/2005 Jones et al.
2003/0009718 Al 1/2003 Wolfgang et al. 2005/0091443 Al 4/2005 Hershkovich et al.
2003/0028493 Al 2/2003 Tajima 2005/0091532 Al 4/2005 Moghe
2003/0028774 Al 2/2003 Meka 2005/0097441 Al 5/2005 Herbach et al.
2003/0046369 Al 3/2003 Sim et al. 2005/0108244 Al 5/2005 Riise et al.
2003/0053420 Al 3/2003 Duckett et al. 2005/0114452 Al 5/2005 Prakash
2003/0055962 Al 3/2003 Freund et al. 2005/0120006 Al 6/2005 Nye
2003/0065571 Al 4/2003 Dutta 2005/0127171 Al 6/2005 Ahuja et al.
2003/0084300 Al 5/2003 Koike 2005/0128242 Al 6/2005 Suzuki
2003/0084318 Al 5/2003 Schertz 2005/0131876 Al 6/2005 Ahuja et al.
2003/0084326 Al 5/2003 Tarquini 2005/0132034 Al 6/2005 de la Iglesia et al.

US 9,430,564 B2

Page 4
(56) References Cited 2007/0220607 A1 9/2007 Sprosts et al.
2007/0226504 Al 9/2007 de la Iglesia et al.
U.S. PATENT DOCUMENTS 2007/0226510 Al 9/2007 de la Iglesia et al.
2007/0248029 Al 10/2007 Merkey et al.
2005/0132046 Al 6/2005 de la Iglesia et al. 2007/0260643 Al 11/2007 Borden et al.
2005/0132079 Al 6/2005 de la Iglesia et al. 2007/0266044 Al 112007 Grondin et al.
2005/0132197 Al 6/2005 Medlar 2007/0271254 Al 112007 de la Iglesia et al.
2005/0132198 Al 6/2005 Ahuja et al. 2007/0271371 Al 112007 Singh Ahuja et al.
2005/0132297 Al 6/2005 Milic-Frayling et al. 2007/0271372 Al 11/2007 Deninger et al.
2005/0138110 Al 6/2005 Redlich et al. 2007/0280123 Al 12/2007 Atkins et al.
2005/0138242 Al 6/2005 Pope et al. 2008/0010256 Al 1/2008 Lindblad
2005/0138279 Al 6/2005 Somasundaram 2008/0027971 Al 1/2008 Statchuk
2005/0149494 Al 7/2005 Lindh et al. 2008/0028467 Al 1/2008 Kommareddy et al.
2005/0149504 Al 7/2005 Ratnaparkhi 2008/0030383 Al ~ 2/2008 Cameron
2005/0166066 Al 7/2005 Ahuja et al. 2008/0071813 Al 3/2008 Naircoocoene. GOGF 17/30115
2005/0177725 Al 8/2005 Lowe et al. 2008/0082497 Al 4/2008 Leblang et al.
2005/0180341 Al 8/2005 Nelson et al. 2008/0091408 Al 4/2008 Roulland et al.
2005/0182765 Al 8/2005 Liddy 2008/0112411 Al 5/2008 Stafford et al.
2005/0188218 Al 82005 Walmsley et al. 2008/0115125 Al 5/2008 Stafford et al.
2005/0203940 Al 9/2005 Farrar et al. 2008/0127346 Al 5/2008 Oh et al.
2005/0204129 Al 9/2005 Sudia et al. 2008/0140657 Al 6/2008 Azvine et al.
2005/0228864 Al 10/2005 Robertson 2008/0141117 Al 6/2008 King et al.
2005/0235153 Al 10/2005 Ikeda 2008/0159627 Al 7/2008 Sengamedu
2005/0262044 Al 11/2005 Chaudhuri et al. 2008/0235163 Al 9/2008 Balasubramanian et al.
2005/0273614 A1 12/2005 Ahuja et al. 2008/0263019 Al 10/2008 Harrison et al.
2005/0289181 Al 12/2005 Deninger et al. 2008/0270462 Al 10/2008 Thomsen
2006/0005247 Al 1/2006 Zhang et al. 2008/0276295 Al 11/2008 Nair
2006/0021045 Al 1/2006 Cook 2009/0070327 Al 3/2009 Loeser et al.
2006/0021050 Al 1/2006 Cook et al. 2009/0070328 Al 3/2009 Loeser et al.
2006/0036593 Al 2/2006 Dean 2009/0070459 Al 3/2009 Cho et al.
2006/0037072 A1 2/2006 Rao et al. 2009/0100055 AL~ 4/2009 Wang
2006/0041560 Al 2/2006 Forman et al. 2009/0157659 Al 6/2009 Satoh et al.
2006/0041570 Al 2/2006 Lowe et al. 2009/0158430 Al 6/2009 Borders
2006/0041760 Al 2/2006 Huang 2009/0178110 Al 7/2009 ngqchl
2006/0047675 Al 3/2006 Lowe et al. 2009/0187568 Al 7/2009 Morin
2006/0075228 Al 4/2006 Black et al. 2009/0193033 Al 7/2009 Ramzan et al.
2006/0080130 Al 4/2006 Choksi 2009/0216752 Al 8/2009 Terui et al.
2006/0083180 Al 4/2006 Baba et al. 2009/0222442 Al 9/2009 Houh et al.
2006/0106793 Al 5/2006 Liang 2009/0232391 Al 9/2009 Deninger et al.
2006/0106866 Al 5/2006 Green et al. 2009/0235150 Al 9/2009 Berry
2006/0150249 A1 7/2006 Gassen et al. 2009/0254516 Al 10/2009 Meiyyappan
2006/0167896 Al 7/2006 Kapur et al. 2009/0254532 Al 10/2009 Yang et al.
2006/0184532 Al 8/2006 Hamada et al. 2009/0271367 Al 10/2009 Dharawat
2006/0235811 Al 10/2006 TFairweather 2009/0288026 Al 11/2009 Barabas et al.
2006/0242126 A1 10/2006 Fitzhugh 2009/0288164 Al 11/2009 Adelstein et al.
2006/0242313 Al 10/2006 Le et al. 2009/0300709 Al 12/2009 Chen et al.
2006/0242694 Al 10/2006 Gold et al. 2009/0326925 Al 12/2009 Crider et al.
2006/0251109 Al 11/2006 Muller et al. 2010/0011016 Al 1/2010 Greene
2006/0253445 Al 11/2006 Huang et al. 2010/0011410 Al 1/2010 Liu
2006/0271506 Al 11/2006 Bohannon et al. 2010/0023726 Al 1/2010 Aviles
2006/0272024 Al 11/2006 Huang et al. 2010/0037324 Al 2/2010 Grant et al.
2006/0288216 Al 12/2006 Buhler et al. 2010/0042625 Al 2/2010 Zoellner GO6F 17/30115
2007/0006293 Al 1/2007 Balakrishnan et al. 707/748
2007/0011309 Al 1/2007 Brady et al. 2010/0088317 Al 4/2010 Bone et al.
2007/0028039 Al 2/2007 Gupta et al. 2010/0100551 Al 4/2010 Knauft et al.
2007/0036156 Al 2/2007 Liu et al. 2010/0121853 Al 5/2010 de la Iglesia et al.
2007/0039049 Al 2/2007 Kupferman et al. 2010/0174528 Al 7/2010 Oya et al.
2007/0050334 Al 3/2007 Deninger et al. 2010/0185622 Al 7/2010 Deninger et al.
2007/0050381 Al 3/2007 Hu et al. 2010/0191732 Al 7/2010 Lowe et al.
2007/0050467 Al 3/2007 Borrett et al. 2010/0195909 Al 8/2010 Wasson et al.
2007/0050846 Al 3/2007 Xie et al. 2010/0268959 Al 10/2010 Lowe et al.
2007/0081471 Al 4/2007 Talley et al. 2010/0332502 Al 12/2010 Carmel et al.
2007/0094394 Al 4/2007 Singh et al. 2011/0004599 Al 1/2011 Deninger et al.
2007/0106660 Al 5/2007 Stern et al. 2011/0040552 Al 2/2011 Van Guilder et al.
2007/0106685 Al 5/2007 Houh et al. 2011/0106846 Al 5/2011 Matsumoto GO6F 17/30115
2007/0106693 Al 5/2007 Houh et al.) 707/769
2007/0110089 Al 5/2007 Essafi et al. 2011/0131199 Al 6/2011 Simon et al.
2007/0112837 Al 5/2007 Houh et al. 2011/0149959 Al 6/2011 Liu et al.
2007/0112838 Al 5/2007 Bjarnestam et al. 2011/0167212 A1 7/2011 Lowe et al.
2007/0116366 Al 5/2007 Deninger et al. 2011/0167265 Al 7/2011 Ahuja et al.
2007/0124384 Al 5/2007 Howell et al. 2011/0196911 Al 8/2011 de la Iglesia et al.
2007/0136599 Al 6/2007 Suga 2011/0197284 Al 8/2011 Ahuja et al.
2007/0139723 Al 6/2007 Beadle et al. 2011/0208861 Al 8/2011 Deninger et al.
2007/0140128 Al 6/2007 Klinker et al. 2011/0219237 Al 9/2011 Ahuja et al.
2007/0143235 Al 6/2007 Kummamuru et al. 2011/0258197 A1 10/2011 de la Iglesia et al.
2007/0143559 Al 6/2007 Yagawa 2011/0276575 A1 11/2011 de la Iglesia et al.
2007/0162609 Al 7/2007 Pope et al. 2011/0276709 A1 11/2011 Deninger et al.
2007/0162954 Al 7/2007 Pela 2012/0114119 Al 5/2012 Ahuja et al.
2007/0185868 Al 8/2007 Roth et al. 2012/0179687 Al 7/2012 Liu

US 9,430,564 B2
Page 5

(56) References Cited
U.S. PATENT DOCUMENTS

2012/0180137 Al
2012/0191722 Al
2013/0246377 Al
2013/0247208 Al
2014/0164442 Al
2014/0289416 Al
2015/0067810 Al
2015/0106875 Al

7/2012 Liu

7/2012 Deninger et al.
9/2013 Gaitonde

9/2013 Bishop

6/2014 de la Iglesia et al.
9/2014 Ahuja et al.
3/2015 Ahuja et al.
4/2015 Ahuja et al.

FOREIGN PATENT DOCUMENTS

WO 2001-047205 6/2001
WO WO 01/99373 12/2001
WO WO 2004/008310 1/2004
WO 2011-080745 7/2011
WO WO 2012/060892 5/2012

OTHER PUBLICATIONS

Unpublished U.S. Appl. No. 14/457,038, filed Aug. 11, 2014 73
pages.

Microsoft Outlook, Out look, copyright 1995-2000, 2 pages.
Preneel, Bart, “Cryptographic Hash Functions”, Proceedings of the
3™ Symposium on State and Progress of Research in Cryptography,
1993, pp. 161-171.

U.S. Appl. No. 11/254,436, filed Oct. 19, 2005, entitled “Attributes
of Captured Objects in a Capture System,” Inventor(s) William
Deninger et al.

U.S. Appl. No. 11/900,964, filed Sep. 14, 2007, entitled “System
and Method for Indexing a Capture System,” Inventor(s) Ashok
Doddapaneni et al.

U.S. Appl. No. 12/190,536, filed Aug. 12, 2008, entitled “Configu-
ration Management for a Capture/Registration System,” Inventor(s)
Jitendra B. Gaitonde et al.

U.S. Appl. No. 12/352,720, filed Jan. 13, 2009, entitled “System and
Method for Concept Building,” Inventor(s) Ratinder Paul Singh
Ahuja et al.

U.S. Appl. No. 12/354,688, filed Jan. 15, 2009, entitled “System and
Method for Intelligent Term Grouping,” Inventor(s) Ratinder Paul
Ahuja et al.

U.S. Appl. No. 12/358,399, filed Jan. 23, 2009, entitled “System and
Method for Intelligent State Management,” Inventor(s) William
Deninger et al.

U.S. Appl. No. 12/360,537, filed Jan. 27, 2009, entitled “Database
for a Capture System,” Inventor(s) Rick Lowe et al.

U.S. Appl. No. 12/410,875, filed Mar. 25, 2009, entitled “System
and Method for Data Mining and Security Policy Management,”
Inventor(s) Ratinder Paul Singh Ahuja et al.

U.S. Appl. No. 12/410,905, filed Mar. 25, 2009, entitled “System
and Method for Managing Data and Policies,” Inventor(s) Ratinder
Paul Singh Ahuja et al.

U.S. Appl. No. 12/690,153, filed Jan. 20, 2010, entitled “Query
Generation for a Capture System,” Inventor(s) Erik de la Iglesia, et
al.

U.S. Appl. No. 12/751,876, filed Mar. 31, 2010, entitled “Attributes
of Captured Objects in a Capture System,” Inventor(s) William
Deninger, et al.

U.S. Appl. No. 12/829,220, filed Jul. 1, 2010, entitled “Verifying
Captured Objects Before Presentation,” Inventor(s) Rick Lowe, et
al.

U.S. Appl. No. 12/873,061, filed Aug. 31, 2010, entitled “Document
Registration,” Inventor(s) Ratinder Paul Singh Ahuja, et al.

U.S. Appl. No. 12/873,860, filed Sep. 1, 2010, entitled “A System
and Method for Word Indexing in a Capture System and Querying
Thereof,” Inventor(s) William Deninger, et al.

U.S. Appl. No. 12/939,340, filed Nov. 3, 2010, entitled “System and
Method for Protecting Specified Data Combinations,” Inventor(s)
Ratinder Paul Singh Ahuja, et al.

U.S. Appl. No. 12/967,013, filed Dec. 13, 2010, entitled “Tag Data
Structure for Maintaining Relational Data Over Captured Objects,”
Inventor(s) Erik de la Iglesia, et al.

Han, OLAP Mining: An Integration of OLAP with Data Mining,
Oct. 1997, pp. 1-18.

Niemi, Constructing OLAP Cubes Based on Queries, Nov. 2001, pp.
1-7.

Schultz, Data Mining for Detection of New Malicious Executables,
May 2001, pp. 1-13.

U.S. Appl. No. 13/024,923, filed Feb. 10, 2011, entitled “High
Speed Packet Capture,” Inventor(s) Weimin Liu, et al.

U.S. Appl. No. 13/047,068, filed Mar. 14, 2011, entitled “Crypto-
graphic Policy Enforcement,” Inventor(s) Ratinder Paul Singh
Ahuja, et al.

U.S. Appl. No. 13/049,533, filed Mar. 16, 2011, entitled “File
System for a Capture System,” Inventor(s) Rick Lowe, et al.

U.S. Appl. No. 13/089,158, filed Apr. 18, 2011, entitled “Attributes
of Captured Objects in a Capture System,” Inventor(s) Ratinder
Paul Singh Ahuja, et al.

U.S. Appl. No. 13/099,516, filed May 3, 2011, entitled “Object
Classification in a Capture System,” Inventor(s) William Deninger,
et al.

Mao et al. “MOT: Memory Online Tracing of Web Information
System,” Proceedings of the Second International Conference on
Web Information Systems Engineering (WISE °01); pp. 271-277,
(IEEE0-0.7695-1393-X/02) Aug. 7, 2002 (7 pages).

International Search Report and Written Opinion and Declaration of
Non-Establishment of International Search Report for International
Application No. PCT/US2011/024902 mailed Aug. 1, 2011 (8
pages).

U.S. Appl. No. 13/168,739, filed Jun. 24, 2011, entitled “Method
and Apparatus for Data Capture and Analysis System,” Inventor(s)
Erik de la Iglesia, et al.

U.S. Appl. No. 13/187,421, filed Jul. 20, 2011, entitled “Query
Generation for a Capture System,” Inventor(s) Erik de la Iglesia, et
al.

U.S. Appl. No. 13/188,441 filed Jul. 21, 2011, entitled “Locational
Tagging in a Capture System,” Inventor(s) William Deninger et al.
Webopedia, definition of “filter”, 2002, p. 1.

Werth, T. et al., “Chapter |—DAG Mining in Procedural Abstrac-
tion,” Programming Systems Group; Computer Science Depart-
ment, University of Erlangen-Nuremberg, Germany.

Office Action from U.S. Appl. No. 10/815,239, mailed Feb. 8, 2008
(8 pages).

Office Action from U.S. Appl. No. 10/815,239, mailed Jun. 13, 2007
(8 pages).

Office Action from U.S. Appl. No. 11/388,734, mailed Feb. 5, 2008,
12 pages.

Office Action from U.S. Appl. No. 10/854,005, mailed Feb. 16,2011
(13 pages).

Chapter 1. Introduction, “Computer Program product for analyzing
network traffic,” Ethereal. Computer program product for analyzing
network traffic, pp. 17-26, http://web.archive.org/web/
20030315045 117/www.ethereal.com/distribution/docs/user-guide,
approximated copyright 2004-2005, printed Mar. 12, 2009.

U.S. Appl. No. 13/422,791, filed Mar. 16, 2012, entitled “System
and Method for Data Mining and Security Policy Management”,
Inventor, Weimin Liu.

U.S. Appl. No. 13/424,249, filed Mar. 19, 2012, entitled “System
and Method for Data Mining and Security Policy Management”,
Inventor, Weimin Liu.

U.S. Appl. No. 13/431,678, filed Mar. 27, 2012, entitled “Attributes
of Captured Objects in a Capture System”, Inventors William
Deninger, et al.

U.S. Appl. No. 13/436,275, filed Mar. 30, 2012, entitled “System
and Method for Intelligent State Management”, Inventors William
Deninger, et al.

U.S. Appl. No. 13/337,737, filed Dec. 27, 2011, entitled “System
and Method for Providing Data Protection Workflows in a Network
Environment”, Inventor(s) Ratinder Paul Singh Ahuja, et al.

U.S. Appl. No. 13/338,060, filed Dec. 27, 2011, entitled “System
and Method for Providing Data Protection Workflows in a Network
Environment”, Inventor(s) Ratinder Paul Singh Ahuja, et al.

US 9,430,564 B2
Page 6

(56) References Cited
OTHER PUBLICATIONS

U.S. Appl. No. 13/338,159, filed Dec. 27, 2011, entitled “System
and Method for Providing Data Protection Workflows in a Network
Environment”, Inventor(s) Ratinder Paul Singh Ahuja, et al.

U.S. Appl. No. 13/338,195, filed Dec. 27, 2011, entitled “System
and Method for Providing Data Protection Workflows in a Network
Environment”, Inventor(s) Ratinder Paul Singh Ahuja, et al.

U.S. Appl. No. 14/042,202, filed Sep. 30, 2013, entitled “Document
De-Registration”, Inventors(s) Ratinder Paul Singh Ahuja, et al.
Walter Allasia et al., Indexing and Retrieval of Multimedia
Metadata on a Secure DHT, University of Torino, Italy, Department
of Computer Science, Aug. 31, 2008, 16 pages.

International Preliminary Report on Patentability Written Opinion
of the International Searching Authority for International Applica-
tion No. PCT/US2011/024902 dated May 7, 2013 (5 pages).

U.S. Appl. No. 13/896,210, filed May 16, 2013, entitled “System
and Method for Data Mining and Security Policy Management”
Inventor(s) Ratinder Paul Singh Ahuja et al.

U.S. Appl. No. 14/181,521, filed Feb. 14, 2014, (22 Pages).

U.S. Appl. No. 14/222,477, filed Mar. 21, 2014 (86 Pages).
English Translation of the Notice of Preliminary Rejection, KIPO
Office Action Mailing Date Apr. 22, 2014 Office Action Summary,
2 pages.

English Translation of the Notice of Allowance, KIPO mailing date
Apr. 15, 2015, Notice of Allowance Summary, 1 page.

Peter Gordon, “Data Leakage—Threats and Mitigation”, IN: SANS
Inst. (2007). http://www.sans.org/reading-room/whitepapers/aware-

ness/data-leakage-mitigation-1931?show=data-leakage-threats-
mitigation-193 1&cat=awareness (69 pages).

Compression of Boolean inverted filed by document ordering
Gelbukh, A.; Sangyong Han; Sidorov, G. Natural Language Pro-
cessing and Knowledge Engineering 2003. Proceedings. 2003 Inter-
national Conference on Year: pp. 244-249, DOI:10.1109/NLPKE.
2003.1275907.

A Model-Driven Approach for Documenting Business and Require-
ment Interdependencies for Architectural Decision Making Berro-
cal, J.; Garcia Alonso, J.; Vicente Chicote, C.; Murillo, J.M. Latin
America Transactions, IEEE (Revista IEEE America Latina) Year:
2014, vol. 12, Issue: 2 pp. 227-235, DOL 10.1109/TLA.2014.
6749542.

Further Result on Distribution Properties of Compressin Sequences
Derived from Primitive Sequences Over Oun-Xiong Zheng; Wen-
Feng Qi; Tian Tian Information Theory, IEEE Transactions on Year:
2013, vol. 59, Issue: 8 pp. 5016-5022, DOI: 10.1109/TIT.2013.
2258712.

Compressing Inverted Files in Scalable Information Systems by
Binary Decision Diagram Encoding Chung-Hung Lai; Tien-Fu
Chen Supercomputing, ACM/IEEE 2001 Conference Year: pp.
36-36, DOI: 10.1109/SC.2001-10019.

Office Action from U.S. Appl. No. 14/042,202, mailed Aug. 21,
2015; 69 pages.

Notice of Allowance from U.S. Appl. No. 14/042,202, mailed Feb.
19, 2016; 16 pages.

Office Action from U.S. Appl. No. 14/457,038, mailed Feb. 22,
2016, 43 pages.

* cited by examiner

US 9,430,564 B2

Sheet 1 of 37

Aug. 30, 2016

U.S. Patent

61

LINHALN

i

I OId w A
QOE- WALSAS AYMILYD
SIRIOLISOIY
TV LAY gam INALNOD
91 HALNOY m bl g
| | / H] } mm< m \)
- f oy m ;
::,:”””” - -1 HOLIMS _
I U M |
M SL~Jd AVMILYD | |
| gThE
| | WHLSAS
| | m HIADDSIT
| _ f
m L
| BOC~] WIISAS | %
| RANLIYD j 0l
|] i
| | i
| | i
-~ | —_
01 | =25
m \. _ | 7
b e e ‘
¢] m HIADYNYA
¥l = _ ¥ivd

US 9,430,564 B2

Sheet 2 of 37

Aug. 30, 2016

U.S. Patent

|
0i~] maiss NELSAS |08
HIA0ISIC qoz | LD
& w J &
2N . 48
8YavYiva TINCOOW [ZCAAN TINCOON
| TVHINED WYL gz HOHY3S
Pt : !
AT4 1474 ol 0l
e
N N /
TINCON wiveanas | | zncow | TINCON
WHOASNYHL VIO " sowawwy [T NoviNasaNd
FINCON V10 t N
¥ ¥ @NN
INTNTT3 FOVAINI sovaain || | waisas
AHOWN d08S300ud SHOMLIN waisn] owEsn gy
/ / N N
802 97 o viva 702 202
\\Q o
0C ¢ Dld

U.S. Patent Aug. 30, 2016 Sheet 3 of 37 US 9,430,564 B2

FIG. 3

DATA MANAGER

20, 722~ SEARCH CENTRAL L~230
MODULE DATABASE
J-
26b ~| CONTROL PATH
¥
CAPTURE SYSTEM
P RN
\..,__w_,_..--—“
- OBJECT
306~ PROCESSOR SEARCH 316
DATABASE
-
320~ BecT || sEARCH | -314
MODULE ENGINE
A A
30" ¥ ¥
OBJECT
INDEX
| CLASSIFICATION | .
312 MODULE MODULE 330
-3
| CAPTURE MEMORY
310-7 MODULES ELEMENT {308
&
NETWORK USER
304~71 INTERFACE INTERFACE | ™-302
&
DATA FROM

ROUTERNETWORK

U.S. Patent Aug.

30, 2016 Sheet 4 of 37

US 9,430,564 B2

32512
OBJECT STORE MODULE
—
322
. 324~ CONTENT STORE 314
fre o e e e 1! e SEARCH
- — e 326~ FILES/POINTERS | = ENGINE
’ |
DATABASE
L et -]
3 F--3
334 338
S f v/
KEYWORD METADATA
ORIECT NDEX(ES) —E INDEX(ES) ‘E
e 1 & i A
CLASSIFICATION > E E
313" MODULE b .
!
FIG 4 INDEX MODULE
i1y, =
330
_START)
501 Y
™ CAPTURE PACKET STREAM
%
903~ ANALYZE PACKET STREAM
¥
505~ COPYMOVE OBJECT DATA
TO STORAGE DEVICE
¥
| CREATE KEYWORD INDEX(ESYENTRIES
507 FOR CAPTURED CONTENT
¥
CREATE METADATA INDEX(ESVENTRIES
508~ BASED ON CAPTURED CONTENT

U.S. Patent Aug. 30, 2016 Sheet 5 of 37 US 9,430,564 B2
E i
a
34~ TErM REFERENCE(S)
KEYWORD 1 | CONFIDENTIAL | REFERENCE 1,REFERENCE 3
KEYWORD 2 | INFORMATION | REFERENCE 1,REFERENCE 2
- L FIG. 6
METADATA REFERENCE(S)
METADATA 1| MAIL FROM
S poLn | REFERENCE 1,REFERENCE 3
METADATA 2 HOl REFERENCE 1,REFERENCE 3
METADATA 3 PDE REFERENCE 1,REFERENCE 4
336 - e
(_START)
QUERY ONE OR MORE KEYWORD | - 1201
INDEXES FOR KEYWORD(S)
QUERY ONE OR MORE METADATA | - 1203
INDEXES FOR METADATA

INTERSECT RESULTS OF KEYWORD
AND METADATA QUERIES - 1205

¢

RETRIEVE INTERSECTED
DOCUMENTS FILE INFORMATION | 1207

FIG. 12

U.S. Patent Aug. 30, 2016 Sheet 6 of 37 US 9,430,564 B2

20 DATA MANAGER
e .
222~1 " seArcH |
230
» MODULE CENTRAL
CONTROL . DATABASE |
PATHS TASK MODULE e
260~
26a~4_ DISCOVER SYSTEM oo
. CRAWL P INVENTORY - METADATA o
g MODULE MODULE DATABASE
. N ~ - y
m— 2o 740 742-
ST el —
CONTENT | CATEGORY .
AN o - CLASSIFICATION |- oo in o
71 MODULE DATABASE
W
| N 752/
40 CRAWL R
ol AND FETCH letw TEMEDIATION L 1 pemepiaTion
MODULE MODULE | INCIDENTS LIST
N 7gpS T
70" 770 760 TS
N REGISTRATION
REGISTRATION | _ LiST
SYSTEM > pa—
S 74)
. £ ¥ %
: g OBUECT e E NDEXTABLE |
CLASSIFICATION Lo ““‘7""“““’
| MODULE |
[MODULE R
4 - \\\ E ?16
br 720 714 J
g M2) \ ¢ 730 E A i
| OBJECTSTORE |_ | SEARCH OBJECT SEARCH
(| MODULE ENGINE AT ARAGE
e N L
USER NETWORK MEMORY
INTERFACE WTERFACE | |PROCESSOR ELEMENT
; / N N
702 704 708 708

FIG.7

U.S. Patent Aug. 30,2016

800

CREATE TAS {INVENTCORY
OR CLASSIFICATION;

802~

Sheet 7 of 37

¥
CRAWL REPOSITORY(ES)

!

CLASSIFY DATA (I
CLASSIFICATION TASK)

BO4~]

806~

¥
FRESENT VIEW OF
DATATO USER

808~

810
.

812
/!

~ CLASSIFICATION ™

_| REFINE TASK

FILTERS

_TASK CREATED?

" REGISTRATION ™_ YES

. TASK CREATED?

812

" REMEDIATION ™1
. TASK CREATED? .~

81 s

\i

US 9,430,564 B2

816~ REFINE TASK FILTERS

REFINE TASKFILTERS

822

!

!

818~ CRAWL REPOSITORY(ES)

CRAWL REPOSITORY(IES)

- 824

!

!

REMEDIATE IDENTIFIED OBJECTS

820~

REGISTER IDENTIFIED OBJECTS

826

¥

>

o
ND

£

FIG. 8

U.S. Patent

Aug. 30, 2016

Sheet 8 of 37

US 9,430,564 B2

NVENTORY
TASK START

CLASSIFICATION
TASK START

930~/ REMEDIATION

301 CREATE/REFINE
"™ TASK DEFINITION OR 900
SEARCH DEFINITION -

| SEARCH OBJECT | YES " SEARCH ™~

STOREMODULE [~ DEFINITION? "

{ o
950 903 X
910
4 INVENTORY | CLASSIFICATION REMEDIATION | i

TASK 8TART

0
craL | 921 crawL anD FETCH e I
-831
¢ ¥ ¥
911 ORJECT OBJECT
922~ CLASSIFICATION 960 CLASSIFICATION
¥ / ¥
] CONTENT SIGNATURE || POLICY | _ | CONTENT SIGNATURE
G231 ANALYSIS ENGINE ANALYSIS
cowﬁsm ' Y
<1 ¢ ¢ REMEDIATION [REMEDIATION
¥ 924 LASSE ATION —\ INCIDENTS LIST 762
CENTRAL 835
230-7\ DATABASE
9{? OLAP MODEL AND
TN CUBE POPULATION | -804
NO -~ MANIPULATE ~YES
o VIEW? ¥ T
GENERATE SUMMARIES
(INVENTORY, 730 FILE 730
CLASSIFICATION, OR N SYSTEM J
PRESENTATION SEARCH RESULTS) " CRIECT STORE
i i N MODULE MODULE
a06 805

U.S. Patent Aug. 30, 2016 Sheet 9 of 37 US 9,430,564 B2

FROM FIG. BA

REGISTRATION |

940 ~_/ REGISTRATION)
_TASK START

¥
841~ CRAWL
AND FETCH

¥

942~ OBJECT
CLASSIFICATION

¥
CONTENT
843~ SIGNATURE
ANALYSIS

POLICY ENGINE 960

8
¥

¥
Q45 REGISTRATION

¥

-
REGISTRATION ¥
LIST 730 FILE SYSTEM 72
7 N\ /
)/‘5"
772~ 774 176 OBJECT
y, INDEX
’ MODULE STORE
INDEX TABLE MODULE
N oo caosmER

FIG. 9B

U.S. Patent Aug. 30, 2016 Sheet 10 of 37 US 9,430,564 B2

3
T
o
<
T
)
TN o~
S |
2]
(5]
[
&
=
iL
—
-
\ \\\%
<
=
o
—d
<
E
L2
-
pooncd
%_% > .
7
= Y - = E g
[= k))
< = =
[+
5 § 5§ !
= 5 =
'
o
& %.!
N
% b =
o 133
2 == 5
o8
Qif-:}iﬁ
Qe x
EJSO
Q=
)
E%}% "
o el
oo < 2
— 5
e
b
RS
o
€
Od

US 9,430,564 B2

Sheet 11 of 37

Aug. 30, 2016

U.S. Patent

L 77

WZLSAS
38N

i

\

6011
NOILY NdINYI
NCIULYITWAT

m@am.mﬁezmaa \A\

H35M 01
NOLLYINISRA

d¥10

-

38VEYLVQ
TWING
CIOASNYL W A

-
1OLL

NOULYIWHOISNYHL

US 9,430,564 B2

Sheet 12 of 37

Aug. 30, 2016

U.S. Patent

ERicLAR
SROISSTE

HYINDIA

N
ell

‘\u\‘\“l\‘knlsfll’fll
et eoeem e

\ ERiE
YivQd

¢ 1 "Oid
eet
.
"y
FOVHOLS XIONI -89t}
TIEVLXIAN e i .
NOLLOTTES AZM NEMOL Vel -
y ¢
! vii
8iL NCHLYHIA0 INNOD NDIOL ~EeEL
o TINCOW T18YL XION
1sn

NOUVHISIORY | »

JEVHOLS T4 ~glel

_— 5

zo;«wzwxﬁ piel

NOILOYH.LE S 76l
TCOW LS NOLLYHLSIDTY ﬁ.

oppL VVELSAS NOUVNISIORY
(i

\ SERTL R

N
bAL

US 9,430,564 B2

Sheet 13 of 37

Aug. 30, 2016

U.S. Patent

Pl ODI4

?
®
@«

SV 1 N

DL NIHOL

6 NIMOL

8 NIHOL

P8I~ LINDIOL
™ ONIMOL

g NINO0L

¥ NIMOL

£ NIS0L

(A NIYOL) Z NDHOL
L NSO

L]
@

&

LS NG YHESIDEY

\ &

vid

: o 68l "
£ 138440 £ =
9 138440 <IX3N>
§ 135440 gl ANINNDOT
¥ 138440 = 135440
£ 136440 ATM NSIOL
Z 138440
L 1596440
o
I1EvVL XIONI

o0

<HFHNMEERHOMIOLYVEVAIS> QOMHD LIVHVAIS> TOM
<O LYY AIS>(HOMHOLYHY 38> THOMIO LYY dE5>(0M

<HOLIYHYdE5> NS NOISS3H3
<HOLYHYIHS= NI T NOISSZHLXT
<HOLYHYdES>(H0MHO LYHY SIS TH0M

\.m

084

£ dH003
¢ (O03Y
L 04003
ERIERARNCREETN i E e
vf
biL

U.S. Patent

1501

1502~

Sheet 14 of 37

US 9,430,564 B2

150371

¥

1504~

L

Aug. 30, 2016
WORD 1 -
WORD 1 = TOKEN
COUNT
OPERATION
EXPRESSION N :
ELEMENT 1 ~ 1322
EXPRESSION o
ELEMENT 2 i
FIG. 15

¥

PRIME
COUNT TABLE
§ 0
1 g
g 2 1540
3 g
4 1
g g
8 g
7 1
8 L
| :
i H
} 0 ! n=TABLE SIZE
N N
1842 1544

U.S. Patent

Aug. 30, 2016

Sheet 15 of 37

US 9,430,564 B2

1600

(START REGESTRATEON) v

LIST CREATION

¥

1592\»Fm@HFmgHEuwﬁmaKMFmE
2
1604~ FETCH FIRST RECORD
OF DELIMITED DATA FILE
&
1606~ IDENTIFY START OF FIRST
DATA ELEMENT IN RECORD
v
1608~ PERFORM EXTRACTION,
TOKENIZATION, AND STORAGE

" MORE ™
< DATAELEMENTSIN
. RECORD? .~

-7 MORE ™~

" RECORDS IN ~

" DELIMITED DATA "
S FLE? o~

~7 MORE ™
< DELIMITEDDATA
. FLES?

FI1G. 16A

IDENTIFY STARTY
OF NEXT DATA
ELEMENT

N
1612

FETCH
NEXT
RECORD

N
1616

S YES

FETCH NEXT
DELIMITED
DATAFILE

N
1620

U.S. Patent

Aug. 30, 2016

START EXTRACTION,
TOKENIZATION, AND STORAGE

¥

Sheet 16 of 37

1652~

SEARCH REGULAR
EXPRESSIONS FOR LONGEST
MATCH TO DATA ELEMENT

S EXPRESSIO

" DOES
DATA ELEMENT

YES

US 9,430,564 B2

1608

MATCH AREGULAR >

“Tho

¥

1660~

FIND END OF DATA ELEMENT

¥

1662~

EXTRACT WORD

EXTRACT
EXPRESSION
ELEMENT

1656

YES

IS

< WORD A STOP WORD >

1664 “TTo

¥

NORMALIZE
EXPRESSION
ELEMENT

1658

16681

STEM WORD

y

‘-«

1870

TOKENIZE WORD/NORMALIZED
EXPRESSION ELEMENT

¥

1672

STORE TOKEN IN TUPLE
OF REGISTRATION LIST

R
L

{ E;\;D }
FIG. 16B

U.S. Patent

Aug. 30, 2016

START INDEX
TABLE CREATION

Sheet 17 of 37

1702~

GENERATE PRIME COUNT
TABLE FOR TOKENS

v

1704~

IDENTIFY FIRST TUPLE
iN REGISTRATION LIST

1700

| 4

»

i

1706~

SEARCH PRIME COUNT TABLE
FOR TOKEN IN TUPLE WITH
THE LOWEST FREQUENCY

v

1708~

SELECT TOKEN WITH THE
LOWEST FREQUENCY AS AKEY

!

1710~

SEARCH ALL INDEXES
FOR A MATCHING KEY

FOUND

_YES

< INDEX WITH A MATCHING >
~. kev?

1712

¥

17167

CREATE NEW INDEX WITH SELECTED
LOWEST FREQUENCY TOKEN KEY

!

ADD DoclD AND TUPLE
OFFSET TO INDEX WITH
MATCHING KEY

17187

ADD Docild AND
QFFSET TO NEW INDEX

N
1714

7 LAST TN
. TUPLE?

IDENTIFY NEXT TUPLE

N
1722

US 9,430,564 B2

US 9,430,564 B2

Sheet 18 of 37

Aug. 30, 2016

U.S. Patent

0 HLIM CILYNINNZL
NOLLVHLSION /
N
//
0
£0]
0| | ,_
¢l ’ :
ZL8L 43 . ’ — 2281
N N R
6l : 0P &
69 1004
66| | €00t ot 06 &l HO>66666 (1} 35108
co | | zo0 28 v 6l INYT] Tddy €21
ez | 1001 = g 89 10-10-0861
-1 | oo : 86 0000-00-000
s sifa b | | 6a6 . & €z MIDNINIC TONYD
LSTTNOILLYHISION w TIavYL XIONI N N
7 We 7081 2081
0ig8L 0281
81 "DId

US 9,430,564 B2

Sheet 19 of 37

Aug. 30, 2016

U.S. Patent

0€2

o M AAAAAAAAAAAA _
SINIWITS
\\aeita.VEFj Qmm w aﬁrﬁmﬁwmﬁw mwm m‘) m.wm w)
h\ . 3svaviva 4 ol L ls
I8vaYLva o m TWHLINGD _
Yi¥Ov =W CZH1L (761
) e u]
O e N
Iiﬁl‘li!!\i\\.\
ot T
AHCLISOdaH -7 |
JNDEINCGD = \ ” |
516} | DN) |
ffﬂ.\\ | 1 oer L T i
| | | | G06L |
| ; | | i
\ ERel ERiiEel] ERlpne | FINO0W FINGON
o6t AHOINZANI YD MEYL Y0 NOLLYINIS3d
/ / N N N
174 OL4 . _ ¥ee giLé 02e
61 "DlAd

US 9,430,564 B2

Sheet 20 of 37

Aug. 30, 2016

U.S. Patent

mmmm/mm,:_mﬁm& alfuig

/7 pepmoxy

papnidy

8002

BRIBHK 180 [S50ID0Y 4l

wol |, [e] oeivezed

UOBEIUISSEI] | uoiiuyen apoN

usiensibey

foper|) uommyeg spoy |

JOA0OSI0)

200z

A

Ascrusny | 2RO

N : mma widg o} wieg Areg w Bnpayes

........... - Sejeayen 158
.wmmwm w mmf_ D wdnosB w HBIURpSIY SUORE00T] O
m _ \ "N s4i0 | wedhy Asousoda sjenuaps
| IOUED sudnoBoer co-sunuefue @ : m et d eRIepeto
BLON O _ | wondunsag SRNPBYDS
saopeg S0 | Sollio Aousaul | uonessdg ueog Susyessdgy usag-
uonesedo UesS Doy uoneInByuon
UOEOLISSELD BIRG suoyRIadQ ueag ereosic [§)
| waisas |} asissvio] saonod | aunuavo |1 a3svo [sinaaiom || 3ol
GoF | Bijoic A | F0BGT | iipe suioiEp
ry 49(...,,
07 "Did 0002

US 9,430,564 B2

Sheet 21 of 37

Aug. 30, 2016

U.S. Patent

4] GZE06} 08 OO 11y & o
$07°668'G ¥62 SIOUNO I 9
WY 108 SJOUN) Y 4 g
67899 9L NGO Y | R
621082 95¢ SIUMO |IY | <UMOWINy 1415
YOY'208 48 ¥y swgive s
$ H \
N Sevsyl 1 SIBURQ Y | WP | _a0LZ
69USLI058) | 0% SIOUM0 I & ipd % 012
BIVEY 107 280G |seunOly e sediy v =T Dupsel sacosg | 5012
BLIVEY LT | 2805 |mowpiy e ssdiiive SORRUS Y = NI \
BLLBEYLOT | Z80S | meunp v e sadkp g ¢ sesRUS Iy | saoysodey iy] Aoy
TEOSPREEL | BL1E | SeURQ Ve Sedkigv e SRIBUS iy | Selioysodey Iy & | 0F') | UoBEOSSER
el G9E'DLZLEE B0V | LLOELY'L | SBUMO IV | 5OUAL Iy ¢ SAIRUG Iy | SOLoHSOdeY Iy | 0.1’y UORBOISSER
¢ i 3 H & 5 thmgﬁﬁ maw\m m‘mm\m
WOY'BEY'09L 846 | PIROEY) | SIBUMO Y | SB0AL IV ¢ SORUS IV | SBUUSODON I 2| o\ oot ccon M\ <
LI0'9RY L0V'508 | GROYGZET | SN ¥ & Sa0AL iy ¢ SRS Iy | SAUOUsOdeY iy & SiSe] = oux0nodd ey pg-ainuebueu |
LL0'789'207'508 | 8890267 | SieumQ v | sedf e SAIBUS iy | SeuoHsodey [& DiEL & SOOIy =
n Gyiang 2 unon e BUKO adA) an4 sBYS Kiopsoday sy8e| SHAS
P2 L SBUNSEBPY
=
£l ¥ ¥ wa | 00[S) | radh |
uchEssse|n weg {5 suopeiad(UBDG JSADDSI(
I waisas || asssvio [saonod || muniavo || 3svo || sinzaow || awod |
T/5H | B0id AW | 7G50 | Wiipe suiooap
%,
- -,
17 °Old4 0012

US 9,430,564 B2

Sheet 22 of 37

Aug. 30, 2016

U.S. Patent

98 07 £ SICIEASIUIURY/NLL NG Bupsa Leacosiy ddo
Y02'588'S ¥57 SICLRRSIUILIDYNILING Bugse Lion0osi(y 2
(jeasd Wnog 4 o IR s BIBUS ~ adh] uoisusbe
samseony | L4zz Loez - 6022~
elez NN

= UORBIDSISY .

VAN %mwmﬁmmmmmu

uonessibey

Iy m NN yse ejesi)) *_ JBROOSIC)
Aiusa

uoneIISSEl) BB (5] suoRRISd(UBDS JBACOSI)

| WELSAS |1 AISSVID || STON0d || Funiavo |

|| SINZQIONI |1 3WOH |

G M S0 AR w TR W UIPE BUIOIIBA

¢C Dld

0022

US 9,430,564 B2

Sheet 23 of 37

Aug. 30, 2016

U.S. Patent

gl } Hasy
el) sadh] Iy = SBIBUGHY + | IDIAYIS TWOOVALMOHLINY LN
888 Z Hosy
808 Z 50AL Y = SRS IV & JOIRISIUIDY Y NYIC
O6Y'GEY 4 1§ sy
96Y'GHD'4 LG sadh] Iy - SRBYS IV < RRASIHUPYIOHING D-ALINYS
78E's 86 Hosy
9z.'88l Pl wayspbusg
850'581 Zi2 stAL Y = SBIBUG Y 1ajuoequ/xdnod
SL¥'804'8 987 Al Iy & SRIBYS Y ¢ $50Z-1bxdnod
LZT YRR €64 5a0AL Iy + SRUBUS IV & 1SYYNYI
018'498'088'12 ocL've sedhl v @ SRIBYS Y SIClRISUIDY/NLLING
Z6Y'GE1 092 ¥82 YeELED) sadd] Iy ¢ SABUS IV < {0R|IBAYION
875'509'620'618 £08'C08"L sedhl v & SSIRYS IiY & 1B IO LNOD-ALINYS
440789 407'508 895'0782 sedh] v & SBIBYG Y + SIBURY) Y =
(i) sig 4 wnog 4 adALald arug LLEE UMD
.\\ SaNSesiy
e1ez T ' i [ron] 1290 | redhy
Maip pauuen

| WAISAS || AdISSYID || SA0M0d || Funidvo ||

uonesyIssely weq (3 suoneied) UBDSG JBACISIC

48Y0

HEERTR

INOH |

doH | Sgoig A | 70857 | uupe awioojem

©C DA

00€2

US 9,430,564 B2

Sheet 24 of 37

Aug. 30, 2016

U.S. Patent

il i
o
Sovz~
prd
pa
Ny
rd
£
yd
mmmwmm SSRIOSTY JO IBGUINYN JO UGG
wsty-103r0Ud/8H EL 0904 Y11 PO

P,

SOR0D (G- LOAMOUEL €L 0801 [T ¥
WBE-103rodeL e 090} [T] X
suiuobie- | 93r0udieL €4 0901 K R

wedy- 1 03r0HdeL 620801 B <

faByS
v

UGIBOISSEID BIRG () SUOHEIBGD UBDS JSAGOSIC]

U waisas || agssvio] saonod | @wunidvo || asvo || siN3aoni || awodH |
&5H | Bl AW | 0BG | unupe oo

®.

VT 'DId 00b2

U.S. Patent Aug. 30, 2016 Sheet 25 of 37 US 9,430,564 B2

2410 FIG. 24B

~a

| HOME || INCIDENTS]| CASE || GAPTURE || POLICIES || CLASSIFY || SYSTEM |
Discover Scan Operations [¥) Data Classification

FileType
33K s

30K

28K

18K

16K

14K FileType: iy
| Share: 10.60.73.18/PROJECT-Atp-Ng!
12K -1 | Count of Number of Records: 29,165

Count of Number of Records

10K
8K

2415

V)
6K ¥
4K -
2K

§ B e
oK l ';lﬁ‘rﬁamimiml’ﬁiml'ﬂ‘i&a j
EREa s iE - Ri83g

US 9,430,564 B2

Sheet 26 of 37

Aug. 30, 2016

U.S. Patent

0001 0GZ) 0081 GOS 0OFL 00EL OOZH OORL 000 GO6 008 00L 008 005 OCF 00E OO 0O O
i |] i] H i H I i } H i] i]]
£33 munrABojounoe - 3P OHIH £L 09 0
wd 7] =
G -
op I T4 (AN 89308 7XXO-LOTPOYIBL L 09 04
ipd BX b _
e NN BNy L0 OU91 €L 090}
adAlong * e -
- g s MBI LOTOUI9L EL 09 0L
AT wsdy-13FOUSL 620501
e NN "BuzuensuBisaQ- L O3rONI9Y €L 090}
SuBUOBIE: JANOYUA/GL €4 0901
SBuyaBang- L O0UAIL €L 09G)
BIRUS
UoHEOWISSEL BIRQ [§] SUONBIRCE UBDS JSADISI
I waisas || adissyo [] saomod || muniavo || 3evo || sinacioni || 3woH |
m,m.mm...m.u Bllitid AR ‘ nobioy m UHUDE SALODIBAA
o 4%{./
DvC HId 0ZYe

US 9,430,564 B2

Sheet 27 of 37

Aug. 30, 2016

U.S. Patent

0cg
254)
\a.....,.v.........{..i 0gs? {SINIWI VLVOYLIN ONY GEGT — o¥ee
\ 1 NOUYWHOIN AH0DILYD) / AR ~
38vavYivd ISVEYIYO TYRINGD b -
NOLLYWMO AN STAS 4
AODIVG | S
e N e, —
e - T
AHOLISOd3Y | |
INFINOD T » |
R S15¢ | -) |
ov _ -1 sﬁé N -1
| | | | G0%¢ |
| ;) | i
o wmmmmﬁﬁu TINCOW HOL34 TINAOW TINGOW TINCOW
ONY IMYHD WSV d¥10 NOLLY LNAS 0
A INTFLNOD
0052 / / N N N
054 bLd . Vée 0i1¢ 0ée
€T DA

US 9,430,564 B2

Sheet 28 of 37

Aug. 30, 2016

U.S. Patent

-

<>|

di ejbuig | :uopiugag apoy

s
Qv+ | | suogdp peoueapy | SIElld | uoBuyeq epoy ‘ﬁ
Oy & J0p

- w@ ISUBIS PBALIBY
Oy + P
| pTO09L 91-B0-1107 | W PORIDON 8
Oy % sodfl Y = Bunes LIoADISIO 2007 Wﬂ m opom
0 UORDIISSD) | X
JBUM adh} uoisusg sEYS i — m SpouS
NQNNJ{W cmmwmmmwmmmm d wdnosB m fepuspen
ﬁ %.m @ uoneasiBoy)
...... | JBADSSI wadd Aoysoday
yse) sjeai) e JBAOSSY] ! | :uopduosag
Kooy g * | [yiewes howony | :uogessdg ueos
uonRouISsElD BIRg (§ suoneiedy uBog JBALOSI] woesads ueag upY
L m SLNITION] m m FNOH w UCIIE2INSSRID BB suonesady usos koS [§)
> BB EETT
i B V/ w
LD ooz | =

US 9,430,564 B2

Sheet 29 of 37

Aug. 30, 2016

U.S. Patent

ory'ssy’ie 804" SIBUAO fIY % saddi iy @ SIBUS Y @ spnday asuepduiog
81256506 £rL'2 SIBUME Y % seddl iy & SRS IV 4 SUDEBIOIA Jeguiny () Jefoidu
995'686'622 G5L'2 SIBUMG Y & sadii iy & s818YS iy % SOWBYY [BUIBIY [BRUDHUDY
SSYO0LBYLY | GEKE SIBUMO IV 4 soddi iy + sBsRUS Iy & uoRetuoy 01 JUes LogeuLIC Budig
GEE'BE6'aE £24€ SIBUMQ [IY sadiy iy + S8IRUS Y MET] BSUBIT SIBA(] BILICHIED
66861222 846'y SIBUME) [4 seddL iy ¢ SRIBUG Y & sajnuip Sugesiy pieog
GES'BIRTETL | 06' SIBUME Y 2 seddl iy & SOBUS Y & | UOREGCLOT) O} LSS UCHBULIGIU] [RRUSDELD
9wOYe96ES T | el's SIBUMG Y & sadhl iy + SRUBUS Y & spuewnaeg) U sieyey [es pus nsme]
gyl ong 2 wnon 4 JBURD adhisid BIBUS - Aiclisen
5 /-~ Senseay 0187 -~
Addy | N0 ysej aieary ffa | uoesysse; |
N@mmw\ 0’} UOTEOSSEp
uoneayssepn veg (9 suogeiad ueng 1BAcasi()
| W3ISAS |1 AJISSVIO || SIOMOd || JunkdvD || 3SYD || SINICGONI || FNOH |
giak M S0CId AN w NOLoT W VILIDE SLUI0DISAM
- L
8T "DIA 0097

US 9,430,564 B2

Sheet 30 of 37

Aug. 30, 2016

U.S. Patent

A Y0042y Big g
2oL TE S boe 2
96108821 859 ¢
09°400°22 962 'L 0
08L'LEY 08 9eg'l L
= ¥86'861 2% B8y SRUBUS IIY = seynuy Buneaiy pieog
9EC'BLE'TET L £06'0 SBUS IV & uoediuoy) 0 JUSS UCHBULIO [BRUSDIUCs
99v'648'685'1 8516 SBIRUS Y sjuBwINaog] U sieyely [ebe pue ynsmey
) eng $ unag areyg AioBeper
v \. Sainzesiy
€167
Addy | m 2] gdoy m NG yse | aeal) | 3 UOREOSHISSEID m
)) Y
7067 0011 UOREOySSER
vonesuisses eeg (9] suoneiad ueng eaeosig
| WEISAS |1 AJISSVID || STONOd |1 3WNAdYD || 3SVD || SINICIONI || IWOH |
mmmmm CTRTRRT w B0 W LR SUIOSIBA
. . ,ﬂ.{./
67 D4 0067

US 9,430,564 B2

Sheet 31 of 37

Aug. 30, 2016

U.S. Patent

GGV 00L'BYL'L T4 SIBUMG Y SAUBUS IIY < uogpedwos o Jues uojeiol; Sunid
QO BIG'GEG L 281L'8 BIBUMD I & SRIBLG BY & SHIBWINDO W Sione 1eBe pus Jnsmen
8ee'BI8'2ET) £06'8 SIRUMD Y SBIBUS fiY + UoHRBtuag O} JUeS UOHRULIO] [BRUSpYUc
SEL'BE6'SE £24'E SIUME Y sSIRUS Iy + BT BSUBOLT SIDAUI(T BILIOHED
261'062'7 74 S{ORIEAYION
Z08'2P6'612 068’y SIOJRASIILDYINI L TN L10e
e . i 0L0E~_
¥86'961 227 8/8'7 L SRURQ Y = SBIBUS I & sainupy Bugesyy peog
(g} onig 2 o 8 UMD BIBUS ficbsen
88INSES
- 3
Ao T |
Addy | {a] g doL | qunog
ZO0E 0811 voneoissep
uopesymssels vieg [$) suoneiadg ueng ieacosig
| WALSAS || AdISSVID || STOMOJ || FunidvD || ASVD || SINIGIONI || 3NOH |
06T | G761 A | T0BGT | uuipe swoojam
d«i../
0% "Id 0008

US 9,430,564 B2

Sheet 32 of 37

Aug. 30, 2016

U.S. Patent

£50°601'} el jaox3
PRy L8 Z9l 404
¥81°089'2 62 PIOMSN | ~PBOLE
124'G85'S 056 sadh] Iy =’ ¢
LOE'BYG'Z B0 j8ax3
86Y'Ze9'e 828 40d
0eg5'0vL's 9y PIOMS | ~960LE
BLETIE LI gzl sadA) Iy = 0w
£26'965C 9Ep EE
081°506'Y By 40d
ELO'EE6'S 158 POMSW | ~GBOLE
81 'EY'G) 1E': sedhp ity =" Y
96¥'708'8 L0’ 180%3
1E0'IBO'EL 080's 40 oLLE
Z089EY8L £eg'y PIOMSH | - BB0LE ~L0LE -~
GEE'9E6'SE £zLe sedi) iy = salBug Y ~ 1 e 95URaF] SIGAU BIUOMED
i) szg 4 unog 4 UL aleus LioBeieg
£LLE .~ saunsesyy
ﬁ m ﬂ | uoneipeLiay |
70LE 0FH uojeaissep
UOHESSELD B1Rg (] suoneiad(ueds JeADISI]
U waishs || agissvio] s30nod || Funidvo || 3svo || SINZGIONE || awoH |
G _ ESTRYRp T _ OB “ UILIPE SLICOBAL
1€ DI RLe

US 9,430,564 B2

Sheet 33 of 37

Aug. 30, 2016

U.S. Patent

7294

o 1 4
1817 SINICION \ e
NOLLWICIWSY
S g2t 02z
P P u -
AHOLISOd3Y o5
JNAINGS |
- m B

e S \ ” 5
——— GiZE | S)

OF | - Glee L

~ | |
| i |
FINGOW FINCGOW HO134 JINCOW
NOLLYIIINEY CINY HAYMD USYL
7 7 7 N
HITAS . f
08/ Lid . B Vel
% DA

e

FINION
NOILYINIST3Md

N

1

0Z¢

US 9,430,564 B2

Sheet 34 of 37

Aug. 30, 2016

| &\momm

| MIET] SSUSIT QUSALIC BRUOIEED

| seynuy Bugesyy nieog

uojsuelxy i []

tonnadiuion 0] 1USS LCHBULICY] BRUSDIUOY

ME] S5LBOTT SIBALQ BILHOHED SHBLINDCY] W Sieney [eBe pue Insme

SME] ASBALL Q181G @EQ \m fioBaen

@mmm

aBp3 eagneduiog Eé@
ey m@
] «

J suwey Aopog [|

WO OB

yse) @z | mﬂd

pLES BB POYISSEL) 198188

uoneoussEn B [§) suoneed(Ueag BACISI]

| WEISAS |1 AJISSYID || SIONOd || FWnidvd || 3SYD || SINJGIONI || IWOH |
digd _ 2 AR _ 000" W URUDE SUUICOIBM

U.S. Patent

€¢ DI 00€8

US 9,430,564 B2

Sheet 35 of 37

Aug. 30, 2016

U.S. Patent

=10 A | O | DL | — e — T
AYA - CNOLLIGNOD LN A NOLLIGNOD
[_sowo | [wmmeaons | [5] [Twmarvoss | [2] oo
NOLLIAONGD LN ANTYA NOLLIGNOD
| waped aj | o | Fa ymewpexg | 4]
ANFWETE == 3NTA NOLLIGNOD
: | woped o | L | Ta Juopwpeg | [spbs |
SAET NOLUGNGD LN HTVA NOLLIGNOD
femigaeig| | <Py lw_ a] spnbe | s weped e | weibolg | {4 yoeurpexy | Ta] spenbe |
EBII0d Polusies NOLLIGNOS ANIWEE (YD ENTVA NOILIGNOD
- seledoid 8jid & [

50bE -

| sewied

Sigjlid | UOBUYBCapON |

wurdnoifqergg-emuebuew @

w suoRdD paouBADY F

LoRRpaLRY | [3pop

auou | tejnpayag

xanout m QUL LTy

410 | :edf) Aiopsoday

SUON O uedunsag
oore"|| [T rore | |
:Sa3IAR0 2 _ ONEIDDUIS Y IRA0OSIC m ‘uoneieds veng
uolesedn ueosg ppy
uoneassel vgg (5 suoneied) uedg SBACISI
Lo WALSAS || AJISSVID [] S30M0d || Inldvd || 38D || SINICIONI | IWOH |
vE Dld

m@ﬂm FI0I] A _ JNOB0T | WIMIPE SLIOO[BA

US 9,430,564 B2

Sheet 36 of 37

Aug. 30, 2016

U.S. Patent

il
s

3

e

F1EYL X3AN
0NV 1811

it

0ese

NOLLYHLISIDH

AUOLISOd3

e

&

0Z5¢€

&

LINZINOD

i.l..i-!:tl.-.-.-. ||n-.-.-.l..\ll.\‘!\

ﬂwi
4

00%E

,ﬂ
|
|

SLGe M

|
|
|

a

o

N
015

&

L

WHISAS
NOILVHISIOZN

}
ANO0W H3L34
(NY TR0

i
FNGON
HSYL

/
044

7
LIl

N
¥2Z

$¢ DA

505¢E

e

FINA0KW
NOILVINISEd

N
0é¢

US 9,430,564 B2

Sheet 37 of 37

Aug. 30, 2016

U.S. Patent

009g

o, B senbe | 14| weyed el
WA NOLLIGNGD N EERE]
ddo, | A| Waed o]
3NTIA NOLLIGNOD JANZAETS
B09E - sapadaig opid » [
SIOPI04 « | M
) M_:mcmmm LIBAOOSIY | | & | ymew pexg | 1 sienta |

A0TA

NOLLIGNGO

1088~ saieyg . [§)

2id o [B)

| uogensiBey | suopdppeoueapy | Sielid

uopessibey | :apoy

Buol m gnpayog

Xauuooay 189) | Jenuspasy

1B XoU000s gBy go-ainuebusw @

BUON O
:S8AR0

-L0ge

410 | 1edAy fioysodey
| | swogduossg
* [AU pouS uoneasiBay | wuoneisdg vesg

yojgied(uUR0g poY

5t "Did

uoneomsseD Bjeg [T suogeiedg ueng IBACOBI

/o1 | Efijoid i | TOBGT | Unipe SUoojBm

US 9,430,564 B2

1
SYSTEM AND METHOD FOR PROVIDING
DATA PROTECTION WORKFLOWS IN A
NETWORK ENVIRONMENT

RELATED APPLICATION

This Application is a continuation of (and claims the
benefit of priority under 35 U.S.C. §120) of U.S. application
Ser. No. 13/338,159, filed Dec. 27, 2011, entitled “SYSTEM
AND METHOD FOR PROVIDING DATA PROTECTION
WORKFLOWS IN A NETWORK ENVIRONMENT”
Inventor(s) Ratinder Paul Singh Ahuja et al., which is a
continuation (and claims the benefit of priority under 35
U.S.C. §120) of U.S. application Ser. No. 13/337,737, filed
Dec. 27, 2011, entitled “SYSTEM AND METHOD FOR
PROVIDING DATA PROTECTION WORKFLOWS IN A
NETWORK ENVIRONMENT,” Inventor(s) Ratinder Paul
Singh Ahuja, et al. The disclosures of the prior applications
are considered part of the disclosure of this application and
are incorporated by reference herein in their entireties.

This Application is related to (1) U.S. application Ser. No.
13/338,060, filed Dec. 27, 2011, entitled, “SYSTEM AND
METHOD FOR PROVIDING DATA PROTECTION
WORKFLOWS IN A NETWORK ENVIRONMENT,”
Inventor(s) Ratinder Paul Singh Ahuja, et al. and (2) U.S.
application Ser. No. 13/338,195, filed Dec. 27, 2011,
entitled, “SYSTEM AND METHOD FOR PROVIDING
DATA PROTECTION WORKFLOWS IN A NETWORK
ENVIRONMENT,” Inventor(s) Ratinder Paul Singh Ahuja,
et al. The disclosures of those applications are considered
part of the disclosure of this application and are incorporated
by reference herein in their entireties.

TECHNICAL FIELD

The present disclosure relates to computer networks and,
more particularly, to a system and a method for providing
data protection workflows in a network environment.

BACKGROUND

Computer networks have become indispensable tools for
modern business. Enterprises can use networks for commu-
nications and, further, can store data in various forms and at
various locations. Critical information, including confiden-
tial, proprietary, or other sensitive data, frequently propa-
gates over a network of a business enterprise. Moreover,
even in a small computer network the amount of objects
(e.g., data files, software files, etc.) containing such infor-
mation can rapidly increase to enormous proportions, mak-
ing the task of manually controlling such information impos-
sible. Accordingly, modern enterprises often rely on
numerous tools to control the dissemination of such infor-
mation and many of these tools attempt to keep outsiders,
intruders, and unauthorized personnel from accessing valu-
able or sensitive information. Commonly, these tools can
include firewalls, intrusion detection systems, and packet
sniffer devices. Nevertheless, obtaining knowledge of the
amounts, locations, and types of confidential, proprietary, or
otherwise sensitive data in a computer network is often a
time-consuming and laborious task.

The ability to offer a system or a protocol that provides an
effective data management system, capable of securing and
controlling the movement of important information, can be
a significant challenge to security professionals, component
manufacturers, service providers, and system administrators
alike.

10

15

20

25

30

35

40

45

50

55

60

65

2
BRIEF DESCRIPTION OF THE DRAWINGS

To provide a more complete understanding of the present
invention and features and advantages thereof, reference is
made to the following description, taken in conjunction with
the accompanying figures, wherein like reference numerals
represent like parts, in which:

FIG. 1 is a simplified block diagram illustrating an
example network environment in which a system for pro-
viding data protection workflows can be implemented in
accordance with the present disclosure;

FIG. 2 is a simplified block diagram illustrating additional
details of a data manager in example embodiments of the
data protection workflows system according to the present
disclosure;

FIG. 3 is a simplified block diagram illustrating additional
details of a capture system in example embodiments of the
data protection workflows system according to the present
disclosure;

FIG. 4 is a simplified block diagram illustrating additional
details of an object store module and an index module in
example embodiments of the data protection workflows
system according to the present disclosure;

FIG. 5 is a simplified flow chart illustrating example
operations that may be associated with indexing objects in
embodiments of the data protection workflows system in
accordance with the present disclosure;

FIG. 6 is a possible embodiment of keyword and metadata
indexes at a particular point in time for one example
scenario;

FIG. 7 is a simplified block diagram illustrating additional
details of a discover system in example embodiments of the
data protection workflows system according to the present
disclosure;

FIG. 8 is a simplified high level flow chart illustrating
example operations associated with embodiments of the data
protection workflows system in accordance with the present
disclosure;

FIGS. 9A and 9B are simplified flow charts illustrating
example operations and data flows of the data protection
workflows system according to the present disclosure;

FIG. 10 illustrates an embodiment of using metadata
elements to generate an online analytical processing (OLAP)
cube;

FIG. 11 graphically illustrates an embodiment of a
method for the generation of an OLAP cube;

FIG. 12 illustrates a simplified example search flow using
metadata and keyword indexing;

FIG. 13 is a block diagram of a possible registration
system in the data protection workflows system in accor-
dance with embodiments of the present disclosure;

FIG. 14 is a block diagram of various data file structures
in the registration system in accordance with embodiments
of the present disclosure;

FIG. 15 is a simplified block diagram with example data
input and output in accordance with one aspect of the
registration system of the present disclosure;

FIGS. 16A and 16B are simplified flowcharts illustrating
example operations that may be associated with embodi-
ments of the registration system in accordance with the
present disclosure;

FIG. 17 is a simplified flowchart illustrating further
example operations that may be associated with the regis-
tration system in accordance with the present disclosure;

FIG. 18 illustrates file contents in an example scenario
associated with the registration system in accordance with
the present disclosure;

US 9,430,564 B2

3

FIG. 19 is a simplified interaction diagram illustrating
potential operations and data flow associated with an inven-
tory task of the data protection workflows system in accor-
dance with the present disclosure;

FIGS. 20-23 are screen display diagrams showing
example user interface (UI) screens associated with an
inventory task and analytics on inventoried objects for one
example network environment in accordance with embodi-
ments of the present disclosure;

FIG. 24A-C are graphical diagrams illustrating potential
graphical representations of data for the example network
environment in accordance with embodiments of the present
disclosure;

FIG. 25 is a simplified interaction diagram illustrating
potential operations and data flow associated with a classi-
fication task of the data protection workflows system in
accordance with the present disclosure;

FIGS. 26-31 are screen display diagrams showing
example Ul screens associated with a classification task and
analytics on classified objects for the example network
environment in accordance with embodiments of the present
disclosure;

FIG. 32 is a simplified interaction diagram illustrating
potential operations and data flow associated with a reme-
diation task of the data protection workflows system in
accordance with the present disclosure;

FIGS. 33-34 are screen display diagrams showing
example Ul screens associated with a remediation task for
the example network environment in accordance with
embodiments of the present disclosure;

FIG. 35 is a simplified interaction diagram illustrating
potential operations and data flow associated with a regis-
tration task of the data protection workflows system in
accordance with the present disclosure; and

FIG. 36 is a screen display diagram showing example Ul
screens associated with a registration task for the example
network environment in accordance with embodiments of
the present disclosure.

DETAILED DESCRIPTION OF EXAMPLE
EMBODIMENTS

Overview

A method is provided in one example embodiment and
includes receiving first sets of metadata elements represent-
ing objects of an inventory and generating a first summary
of a first subset of the objects. The method further includes
receiving second sets of metadata elements and correspond-
ing category information representing objects of the first
subset that are classified based on a first category. The
method also includes generating a second summary of a
second subset of the classified objects. In further embodi-
ments, the method includes initiating a protection task for
objects of the second subset of the classified objects. The
protection task can include applying a remediation policy to
the objects of the second subset or registering the objects of
the second subset.

In other embodiments, a method includes receiving sets of
metadata elements and corresponding category information
representing objects of a data storage location that are
classified based on a category. The method further includes
generating a summary of a subset of the classified objects
and initiating a protection task for objects of the subset. In
more specific embodiments, the protection task includes
applying a remediation policy to the objects of the subset.
Another protection task includes registering the objects of
the subset.

25

30

35

40

45

50

4

A method is provided in yet another example embodiment
and includes receiving first sets of metadata elements rep-
resenting an inventory of objects in a data storage location
of a network environment and presenting an inventory view
of the objects to a user. The inventory view includes a first
summary of the inventory objects. The method further
includes receiving a request from the user to manipulate the
inventory view based on a first selected dimension group
and presenting to the user a manipulated inventory view that
includes a second summary of a first subset of the inventory
objects.

Example Embodiments

FIG. 1 is a simplified block diagram illustrating an
embodiment of a system for providing data protection
workflows based on analytics over various dimensions (e.g.,
metadata) and over classifications of objects in an example
network environment 10. Network environment 10 can
include content repositories 40 containing data at rest. The
data protection workflows system may include a discover
system 70 and a data manager 20 implemented in network
environment 10 to provide workflows for protecting data on
content repositories 40. Although a single discover system
70 will be described herein, the data protection workflows
system can accommodate any number of discover systems
distributed throughout network environment 10 or other
associated networks (e.g., geographically distributed net-
works of an enterprise), which could access other content
repositories in network 10, in other associated networks, or
otherwise accessible to a discover system. Network envi-
ronment 10 may also include a variety of other components
including, for example, capture systems 30a-305, an email
gateway 12, a web gateway 13, a switch 14, a router 15, and
a firewall 16. Firewall 16 may provide a suitable connection
with other networks including Internet 19.

In network environment 10, other network elements such
as capture systems 30a-305 (referred to herein in the sin-
gular as capture system 30) can enable discovery of data in
motion in the network. For example, capture system 30a can
enable discovery of network traffic leaving network envi-
ronment 10 through, for example, email gateway 12 and web
gateway 13. Another capture system 306 could enable
discovery of all ingress and egress network traffic of network
environment 10. Data manager 20 and capture systems
30a-b may be configured in the data protection workflows
system to provide data protection workflows for captured
data in motion of network environment 10.

The network environment illustrated in FIG. 1 may be
generally configured or arranged to represent any commu-
nication architecture capable of exchanging packets. Such
configurations may include separate divisions of a given
business entity (e.g., a marketing segment, a sales segment,
aproduction segment, a financial segment, etc.). Network 10
may also be configured to exchange packets with other
networks, such as Internet 19, through firewall 16, and other
associated networks that could be accessed through Internet
19, for example.

A system for providing data protection workflows can
help organizations develop information protection strategies
for data in their network environments. Embodiments of the
data protection workflows system enable workflows man-
aged by users (e.g., network administrators) in which ana-
Iytical techniques (e.g., online analytical processing
(OLAP)) can be applied to metadata and classifications of
information assets, which have been inventoried and/or
classified based on one or more categories. Information
assets can include any objects from a network environment
(e.g., data at rest and/or data in motion) and these objects can

US 9,430,564 B2

5

be inventoried and/or classified based on categories as part
of the workflows. Metadata can be derived from each object
and classifications can be derived by evaluating the content
of the objects based on one or more categories.

By applying analytical techniques to metadata and clas-
sifications of information assets that have been inventoried
or classified during a workflow, analytic views of the inven-
toried or classified objects can be created. An analytic view
of objects can be a summarized view by one or more
dimensions. Dimensions can include, but are not limited to,
metadata types such as device (e.g., discover or capture
device), data storage location (e.g., content repository and/or
share), file type, file size, mode of transmission (e.g., for data
in motion), and file owner. Other dimensions can include
completed tasks (e.g., inventory or classification tasks) and
classifications (i.e., category information for categories used
to classify the objects).

A summarized view of objects can present multiple sum-
maries that reveal the distribution of the objects across
various data storage locations and the quantification of the
objects and subsets of the objects in the data storage loca-
tions. Each subset of the objects can be associated with a
different combination of metadata elements and possibly
categories. The summarized views can be presented on a
display screen of a computer and configured to allow users
to create and execute information protection tasks in an
efficient manner to remediate, register, or otherwise protect
data within a network environment from unauthorized dis-
closure, transmission, modification, deletion, or any other
unauthorized action. Protection tasks can include, for
example, remediation tasks and/or registration tasks for data
at rest (e.g., objects stored in a content repository) within a
network environment.

For purposes of illustrating the techniques of a data
protection workflows system, it is important to understand
the activities and security concerns that may be present in a
given network such as network environment 10 shown in
FIG. 1. The following foundational information may be
viewed as a basis from which the present disclosure may be
properly explained. Such information is offered earnestly for
purposes of explanation only and, accordingly, should not be
construed in any way to limit the broad scope of the present
disclosure and its potential applications.

A challenge in many network environments is the ability
to control confidential or other sensitive data in the network.
In particular, information security teams in large enterprises
are confronted with protecting exceedingly large amounts of
unstructured data including, for example, files (also referred
to herein as ‘objects’ or ‘assets’) kept in numerous data
storage locations, such as servers or other network elements
referred to herein as ‘content repositories’, and more specific
data storage locations such as shares of a file server. In
addition, security teams are also typically tasked with pro-
tecting some or all of the information traversing their
networks. In many instances, the nature (i.e., classification)
and the quantity of these information assets are unknown.
Consequently, implementing effective data loss prevention
(DLP) policies can be hindered.

As used herein, the terms ‘object’, ‘information asset’,
and ‘asset” are intended to include any file containing data in
a network environment. Data, as used herein, refers to any
type of numeric, alphanumeric, voice, video, or script data,
any type of source or object code, assembly code, or any
other information in any form suitable for use with a
computer. The term ‘data at rest’ refers to data in objects
stored in content repositories, such as hard drives, file
servers, backup mediums, and any other suitable electronic

20

30

40

45

6

storage. The term ‘data in motion’ refers to data formatted
for transmission (e.g., HTML, FTP, SMTP, Webmail, etc.)
that streams across a network (i.e., network traffic) and that
resides in objects extracted from network traffic and stored
in temporary or archival storage. Examples of information
assets (or objects) include word processing documents,
portable document format (PDF) files, spreadsheets, data-
bases, electronic mail (email) messages, email attachments,
plaintext files, human language text files, source code files,
object code files, binary files, Hyper Text Markup Language
(HTML) files, executable files, etc.

Current approaches to network security, and specifically
data loss prevention, generally include a manual process in
which data protection policies are created and applied. For
data at rest, data protection teams typically conduct an audit
of all servers, shares on those servers, and an inventory of
the files in each of the shares. This could potentially include
enormous sets of data, possibly peta-bytes of unstructured
data. Additionally, data protection teams also need to quan-
tify the assets on the shares, determine the type and nature
of the assets, and determine whether the assets should be
protected. These planning stages are necessary because
executing data protection policies on large amounts of data
(e.g., peta-bytes of data) may be prohibitive in terms of time
and resources needed to protect the data, particularly when
the data is not critical. Similarly, for data in motion, an
infinite stream of information could flow across any given
network. Thus, data protection teams need to obtain all of
the relevant information about data in motion so that data
protection policies can be appropriately targeted and, for
example, not unnecessarily applied to the data in motion.

Quantifying assets and determining a type and nature of
assets can be difficult for data protection teams because they
typically lack visibility to data in their networks. A tremen-
dous amount of data in a network can compound the
difficulty in identifying and protecting the data. For any
given network environment, a determination typically needs
to be made as to the type and amount of data in the network,
where the data resides, who owns the data, and which data
should be protected.

One strategy that is used to identify and protect data is
referred to as sampling. In this approach, a selected number
(or sample) of files from servers and other data storage
locations (e.g., share points, databases, infrastructure ele-
ments, etc.) are identified in the network. For example, a few
hundred files may be identified on each server. Existing DLP
solutions or other inspection mechanisms may then be used
to evaluate the file samples. Such an approach, however, can
result in data protection policies being applied in an over-
inclusive and/or under-inclusive approach. Over-inclusive
approaches may result in data protection policies being be
applied to all files found on a share of a server if protectable
data was found in a sample from that share, even though
numerous other files in the same share may not contain
sensitive data. Conversely, if a sample happens to miss
critical data on a server, then when data protection policies
are not applied to that server (or specific server share),
critical data on the server (or specific server share) could
remain unprotected.

Another strategy involves trial runs with policies.
Selected policy parameters (e.g., confidential materials, spe-
cific product names, code names, intellectual property docu-
ments, etc.) may be used to perform trial runs on various
servers, shares, databases, and other network elements. If
one selected policy parameter does not yield any results,
other policy parameters may be selected for trial runs. For
example, if a first trial run searching for ‘confidential

US 9,430,564 B2

7

information’ produces no results, than another trial run may
be performed using ‘proprietary information.” Such a trial-
and-error approach can be extremely labor-intensive and
time-consuming and can consume valuable network
resources.

A system for providing data protection workflows as
outlined by FIG. 1 can resolve many of these issues. In
accordance with one example embodiment, a data protection
workflows system provides a process for identifying an
inventory of objects in a network environment, classifying
objects based on categories, and protecting objects as
needed (e.g., by remediating and/or registering objects). In
one example data protection workflow, a user can initially
select any one or more network elements, such as content
repositories 40, for the system to inventory. The inventory
task can involve obtaining an object listing of metadata from
the selected repositories or segments thereof. Analytic tech-
niques, such as online analytical processing (OLAP) can be
applied to the metadata elements to create an analytic view
of the objects by many dimensions (e.g., types of metadata).
The analytic view can be presented to a user via a user
interface (UI), such as a graphical user interface (GUI) that
includes dimension groups within dimensions, which can be
presented in a hierarchical arrangement. The types of meta-
data corresponding to the dimensions include, for example,
content repositories, shares, file types, file size, file owners,
etc. A dimension group can include specific metadata ele-
ments of the same type of metadata and a user may select
any one or more dimension groups from the analytic inven-
tory view to obtain a more detailed view of the metadata
elements in the selected dimension group relative to other
dimensions in the hierarchy.

A classification task can be independently instantiated or
derived from an analytic inventory view (based on metadata)
or from an analytic classification view (based on classifica-
tions by categories and metadata). The targeted objects can
be found on one or more selected content repositories (or
shares of content repositories). The contents of the targeted
objects can be evaluated in order to identify occurrences of
particular data associated with predefined categories and to
classify objects by category accordingly. An analytic view of
the objects classified by category can be presented to a user
via the Ul

A remediation task may also be available to allow a user
to select and remediate one or more objects from an analytic
inventory view or from an analytic classification view. The
user can select any appropriate remediation policy to be
applied to protect the selected objects. Remediation policies
could include, for example, deleting objects or particular
data within objects, quarantining objects, moving objects to
a designated content repository, adding access requirements
to objects, performing various actions to effectively block or
allow execution of objects (e.g., adding program files to a
whitelist, adding program files to a blacklist, removing,
renaming, or quarantining program files, etc.), encrypting
objects, etc. Thus, a user is provided with a system that
enables data protection workflows to obtain an inventory of
files within a network, to classify files of selected subsets of
the inventoried files by various categories, and to remediate
files of any selected subsets of the inventoried or classified
files as needed.

Finally, a registration task may also be provided to allow
a user to select and register one or more objects from an
analytic inventory view or from an analytic classification
view. Any suitable registration technique could be imple-
mented. One example registration technique includes regis-
tering combinations or sets of data elements in selected

40

45

8

objects that are desired to be protected. Once an object has
been registered, the combinations or sets of data elements of
the object can be detected by a detection system imple-
mented, for example, in a capture system such as capture
systems 30a and/or 305 when network traffic includes the
particular combinations or sets of data elements. Any appro-
priate policies may be implemented to appropriately handle
captured objects containing the registered combinations or
sets of data elements including, for example, blocking the
network traffic.

Turning to the infrastructure of FIG. 1, the data protection
workflows system can be implemented in exemplary net-
work environment 10, which may be configured as one or
more networks in any suitable form including, but not
limited to local area networks (LANs), wireless local area
networks (WLANS), virtual local area networks (VLLANSs),
metropolitan area networks (MANSs), wide area networks
(WANSs) such as the Internet, virtual private networks
(VPNs), Intranets, Extranets, any other appropriate archi-
tecture or system, or any suitable combination thereof that
facilitates communications in a network environment. Gen-
erally, network environment 10 may be configured or
arranged to represent any communication architecture
capable of exchanging electronic packets. Moreover, net-
work environment 10 may be configured using various
suitable wired technologies (e.g., Ethernet) and/or wireless
technologies (e.g., IEEE 802.11x%).

Network environment 10 can be operably coupled to
Internet 19 by an Internet Service Provider (ISP) or through
an Internet Server with dedicated bandwidth in example
embodiments. Network environment 10 could also be con-
figured to exchange packets with other networks configured
as LANSs or any other suitable network configuration. The
connection to Internet 19 and other logically distinct net-
works may include any appropriate medium such as, for
example, digital subscriber lines (DSL), telephone lines, T1
lines, T3 lines, wireless, satellite, fiber optics, cable, Ether-
net, etc. or any suitable combination thereof. Numerous
networking components such as gateways, routers, switches
(e.g., switch 14, router 15), etc. may be used to facilitate
electronic communication in network environment 10, Inter-
net 19, and any other logically distinct networks linked to
network environment 10.

Each of the elements of FIG. 1 may couple to one another
through simple network interfaces or through any other
suitable connection (wired or wireless), which provides a
viable pathway for network communications. Additionally,
any one or more of these elements may be combined or
removed from the architecture based on particular configu-
ration needs. Network environment 10 may include a con-
figuration capable of transmission control protocol/Internet
protocol (TCP/IP) communications for the transmission or
reception of packets in a network. Network environment 10
may also operate in conjunction with a user datagram
protocol/IP (UDP/IP) or any other suitable protocol where
appropriate and based on particular needs.

In example network environment 10, network traffic con-
taining data in motion can flow through various network
elements. Email gateway 12 can allow client computers (not
shown), which are operably coupled to network environ-
ment 10, to send and receive email messages using Simple
Mail Transfer Protocol (SMTP) or any other suitable pro-
tocol. Web gateway 13, may serve as an ingress and egress
point for other network traffic flowing in and out of network
10. Accordingly, capture system 30a can be configured to
capture and store network traffic flowing through network
elements such as email gateway 12 and web gateway 13.

US 9,430,564 B2

9

Other network traffic could be propagating through instant
messaging (IM), wikis, blogs, portals, and Web 2.0 tech-
nologies, and could also be discovered by capture system
30q. Similarly, capture system 3056 can be configured to
capture and store any or all ingress and egress network traffic
by performing real-time scanning and analysis of network
traffic in network 10.

In one example embodiment, the packets of data captured
by capture systems 30a and/or 306 can be assembled into
objects (or files) and the objects can then be classified based
on file type, indexed, and stored (e.g., internally or exter-
nally in a capture database) with information such as sender
and recipient identifications. In accordance with embodi-
ments in this disclosure, capture systems 30a-b can search
their respective capture databases (or a combined capture
database) to obtain a file listing of the stored network traffic,
including metadata of objects, and to identify objects in
network traffic containing particular content.

Data at rest is represented in network environment 10 by
content repositories 40 (referred to herein in the singular as
content repository 40 to refer to one content repository).
Content repositories 40 can include any suitable memory
element for storing data in a network, including magnetic or
optical disks, hard disk drives, file servers, backup mediums,
removable cartridges, flash drives, and any other suitable
data storage. Additionally, repositories 40 could also include
computer memory. In some embodiments, content reposito-
ries 40 comprise logical partitions, or shares, which can be
uniquely identified and shared with other users based on
credentials.

Data manager 20, discover system 70, and capture sys-
tems 30a-b can be configured in network appliances or any
other suitable network element as part of the data protection
workflows system in network environment 10. For example,
one or more of data manager 20, discover system 70, and
capture systems 30a-b could be implemented in conjunction
with (or included within) a network element such as a router,
switch, gateway, bridge, loadbalancer, server, or any other
suitable device, component, element, or object operable to
exchange information in a network environment. Moreover,
data manager, discover system, and capture systems may
include any suitable hardware, software, components, mod-
ules, interfaces, or objects that facilitate the operations
thereof. This may be inclusive of appropriate algorithms and
communication protocols that facilitate the data protection
workflows operations detailed herein.

These network appliances (or other network elements) in
which the systems can be implemented may be able to
access communication pathways associated with the net-
work configuration, such that one or more appliances have
access to e-mail traffic, other network traffic, or data that is
simply residing somewhere in the infrastructure (e.g., on a
server, a repository, a database, a windows share, etc.). In
particular, network appliances with discover system 70 can
be deployed in network 10 for access to repositories 40,
which may contain sensitive data elements. In one embodi-
ment, discover system 70 can generate metadata of objects
found in repositories 40, can evaluate the content of selected
objects or groups of objects for classifying by category, and
can remediate and/or register an object or group of objects
as needed.

Data manager 20 can be operably connected to a user
system 22 having a display monitor 24 (e.g., personal
computer, user workstation, terminal station, laptop, etc.).
User system 22 can be configured to allow a user to execute
data protection workflows through, for example, a graphical
user interface (GUI) on display monitor 24. In one embodi-

10

15

20

25

30

35

40

45

50

55

60

65

10

ment, a user interface interacts with a web server (not
shown) to provide the user with Web-based access to data
manager 20 via user system 22.

In example embodiments, inventory, classification, reme-
diation, and registration tasks may be selected and applied to
various content repositories containing data at rest. Addi-
tionally, search queries may be selected and applied to
indexed data, which can include data at rest and/or captured
data in motion. When an inventory task is created, discover
system 70 can obtain metadata of objects from a selected one
or more content repositories or shares thereof and provide
the metadata to data manager 20. Data manager 20 can
perform analytics on the metadata, generate summaries
based on various dimensions of the inventoried objects, and
display an analytic inventory view on display monitor 24.

When a classification task is created (from an analytic
view or from being independently instantiated), discover
system 70 fetches objects identified in accordance with
selected parameters (e.g., metadata elements and/or catego-
ries) and evaluates the contents of those objects in order to
classify the fetched objects into appropriate categories. Data
manager 20 can generate summaries based on various
dimensions of the classified objects and display an analytic
classification view on display monitor 24. Data manager 20
can also be configured to allow a user to create a remediation
task or a registration task to be applied to subsets of objects
selected through an analytic view displayed on display
monitor 24.

Data manager 20 may also be configured to allow a user,
such as an authorized security professional (e.g., network
administrator), to determine which categories should be
used when executing a classification task. The security
professional can select from predefined categories and/or
alternatively, may create their own unique categories or add
to search criteria for existing categories.

Data protection workflows system is also scalable as
distributed networks can include additional discover sys-
tems and capture systems for performing inventory, classi-
fication, remediation, registration, and search query activi-
ties across distributed network segments (e.g., having
separate access points, being geographically dispersed,
being logically separated by functionality, etc.) of a network
infrastructure. Data manager 20 may continue to coordinate
data flow to discover system 70 and capture systems 30, in
addition to potential discover systems and capture systems
provided in distributed segments of network 10.

Turning to FIG. 2, a simplified block diagram is shown
with additional details that may be associated with data
manager 20 of a data protection workflows system. Data
manager 20 can include various modules and other compo-
nents such as an online analytical processing (OLAP) mod-
ule 210, a presentation module 220, a search module 222, a
task module 224, and a central database 230. OLAP module
210 can include a transform module 212, an OL AP generator
214, and an analytics module 216. Data manager 20 can also
include a user interface (UI) 202, a network interface 204, a
processor 206, and a memory element 208 to facilitate
operations related to the various modules and other compo-
nents.

User input can be received by data manager 20 from user
system 22 through user interface 202, which could be a
graphical user interface (GUI). Numerous display screens
may be provided by presentation module 220 to present a
user with summarized views of objects and task creation
options. User interface elements can enable automation of
workflows with user selections being processed and appro-
priately directed by presentation module 220.

US 9,430,564 B2

11

In a first workflow scenario, display screens presented to
a user on user system 22 allow the user to select one or more
data storage locations (e.g., a single network address of a
selected content repository, a range of network addresses of
selected content repositories, one or more shares of a
selected content repository, etc.) and to select an inventory
or classification task to perform on the one or more selected
repositories or shares. Task module 224 can communicate a
task request including the selected task parameters, via a
control path 26a to the appropriate discover system (e.g.,
discover system 70). For an inventory or classification task,
discover system 70 can generate inventory data (e.g., sets of
metadata elements) or classification data (e.g., sets of meta-
data elements and category information) of objects on the
one or more selected content repositories or shares. This
inventory or classification data can be loaded into central
database 230. In some embodiments central database 230
can be configured as a relational database such as a struc-
tured query language (SQL) table, and may include aggre-
gated inventory and/or classification data from multiple
distributed discover systems.

Central database 230 can be loaded into an OLAP cube,
analytics can be applied, and summaries of the data can be
generated by OLAP module 210. A transform module 212
can transform the data in central database 230 into a desired
number of buckets (or axes) for an OLAP cube. Each bucket
(or axis) includes a group of related information (e.g.,
objects on a particular share, objects associated with a
particular owner, objects of a particular file type, etc.).
OLAP generator 214 can load the buckets into an OLAP
cube and analytics module 216 can apply analytics to the
cube to generate analytical summaries of inventoried objects
(if an inventory task was performed) or classified objects (if
a classification task was performed). Display screens show-
ing analytic inventory or classification views can be gener-
ated by presentation module 220 and presented to a user
through user interface 202. For ease of reference, ‘OLAP
cube’ is referred to herein although any other appropriately
dimensioned container could be configured for the data load
from central database 230.

A user can manipulate summarized views by ‘drilling
down’ any desired data dimension group that contains spe-
cific metadata elements associated with a particular type of
metadata. In example embodiments of the data protection
system, analytic inventory and classification views can
include clickables representing each dimension group and a
user can select a desired dimension group by activating its
corresponding clickable. As used herein, the term ‘clickable’
is intended to mean an active area in a graphical user
interface (GUI) that can be triggered or activated by a user
by, for example, clicking a mouse, touchpad, or screen, by
highlighting the active area and hitting ‘enter’ on a key-
board, etc. A user can also manipulate the view by ‘slicing
and dicing’ particular dimensions and/or particular metadata
elements to filter out or remove from the view.

User interface 202 can receive a dimension group selec-
tion from a user via user system 22 and provide it to
analytics module 216, which can drill down into the selected
dimension group and provide another summarized view of
the data to the user, listing specific metadata elements of the
selected dimension group and measures (e.g., count, size)
associated with the metadata elements. For example, if a
user selects an owner dimension group in an analytic inven-
tory view by clicking on a corresponding clickable, then
analytics module 216 can use the OLAP cube to identify all
of the owners of the inventoried objects. Analytics module
216 can also quantify subsets of the inventoried objects (e.g.,

5

10

15

20

25

30

35

40

45

50

55

60

65

12

by generating measures such as counts and sizes), where
each subset is associated with a respective owner. If another
dimension group (e.g., file types dimension group) is
selected, and if that newly selected dimension group is
associated with one of the enumerated owners (e.g., Owner
Admin), then analytics module 216 can use the OLAP cube
to identify all of the files types of the Owner Admin’s
objects. In addition, analytics module 216 can also generate
measures corresponding to each new subset of the invento-
ried objects, where each new subset is associated with the
Owner Admin and a respective file type. At any point, the
user can select another task of interest such as 1) a new
inventory or classification task on a different content reposi-
tory or share, or 2) a classification, remediation, or regis-
tration task on a currently displayed inventory or classifi-
cation view.

Presentation module 220 may also present a search query
option to a user to select a database (or other suitable
storage) containing data in motion captured in the network
or containing data at rest fetched during a classification,
remediation, or registration task. Thus, when a search query
is selected, search module 222 can communicate a search
request including selected search parameters via a control
path 265 to the appropriate system (i.e., capture system 30
or discover system 70) with access to the selected database.
Alternatively, the selected database may be provided sepa-
rately in a storage element in the network and search module
222 could be configured to directly access and search these
separate storage elements. The system performing the search
can retrieve metadata and category information of objects
indexed and stored in the selected database. This metadata
and category information can be loaded into central database
230 and processed in a similar manner as metadata and
category information obtained from a classification task.

Capture System

Turning to FIG. 3, a simplified block diagram is shown
with additional details that may be associated with capture
system 30 of a data protection workflows system. In opera-
tion, capture system 30 can intercept data leaving a network
(such as network 10), data being communicated internally to
a network, or data being communicated within a network.
Capture system 30 can reconstruct objects (e.g., documents)
in network traffic (e.g., leaving the network) and store them
in a searchable fashion. Capture system 30 can then be used
to search and sort through all documents that have left the
network. There are many reasons why such documents may
be of interest, including: network security reasons, intellec-
tual property concerns, corporate governance regulations,
and other corporate policy concerns. Example documents
include, but are not limited to, Microsoft Office documents
(such as Word, Excel, etc.), text files, images (such as JPEG,
BMP, GIF, PNG, etc.), Portable Document Format (PDF)
files, archive files (such as GZIP, ZIP, TAR, JAR, WAR,
RAR, etc.), email messages, email attachments, audio files,
video files, source code files, executable files, etc.

FIG. 3 shows an embodiment of capture system 30 in
more detail and it includes a network interface module 304,
capture modules 310 (which could include a packet capture
module and an object assembly module in example embodi-
ments), an object classification module 312, an object store
module 320, an index module 330, a search engine 314, and
an object search database 316. In addition, a user interface
302, a processor 306, and a memory element 308 are
provided in capture system 30 to facilitate the operations
related to the various modules and other components. A
capture system (such as capture system 30qa or 305) may also

US 9,430,564 B2

13

be referred to as a content analyzer, content/data analysis
system, or other similar name.

Network interface module 304 receives (captures) data,
such as data packets, from a network or router. Example
network interface modules 304 include network interface
cards (NICs) (for example, Ethernet cards). More than one
NIC may be present in a capture system. The captured data
is passed from network interface module 304 to capture
modules 310, which can extract packets from the captured
data. Capture modules 310 may extract packets from data
streams with different sources and/or destinations. One such
case is asymmetric routing where a packet sent from source
“A” to destination “B” travels along a first path and
responses sent from destination “B” to source “A” travel
along a different path. Accordingly, each path could be a
separate “source” for capture modules 310 to obtain packets.
Additionally, packet data may be extracted from a packet by
removing the packet’s header and checksum.

When an object is transmitted, such as an email attach-
ment, it is broken down into packets according to various
data transfer protocols such as Transmission Control Proto-
col/Internet Protocol (“TCP/IP”), UDP, HTTP, etc. Capture
modules 310 can also reconstruct the original or a reason-
ably equivalent document from the captured packets. For
example, a PDF document broken down into packets before
being transmitted from a network is reassembled to form the
original, or reasonable equivalent of the, PDF from the
captured packets associated with the PDF document. A
complete data stream is obtained by reconstruction of mul-
tiple packets. The process by which a packet is created is
beyond the scope of this application.

One or more tables may be included in or accessible to
capture system 30. In other embodiments, these tables may
be provided externally to these elements, or consolidated in
any suitable fashion. The tables are memory elements for
storing information to be referenced by their corresponding
network appliances. As used herein in this document, the
term ‘table’ is inclusive of any suitable database or storage
medium (provided in any appropriate format) that is capable
of maintaining information pertinent to the operations
detailed herein in this Specification. For example, the tables
may store information in an electronic register, diagram,
record, index, list, or queue. Alternatively, the tables may
keep such information in any suitable random access
memory (RAM), read only memory (ROM), erasable pro-
grammable ROM (EPROM), electronically erasable PROM
(EEPROM), application specific integrated circuit (ASIC),
software, hardware, or in any other suitable component,
device, element, or object where appropriate and based on
particular needs.

Capture modules 310 group (assemble) received packets
into at least one unique flow. A Transmission Control
Protocol/Internet Protocol (TCP/IP) flow contains an
ordered sequence of packets that may be assembled into a
contiguous data stream by capture modules 310. An example
flow includes packets with an identical source IP and des-
tination IP address and/or identical TCP source and desti-
nation ports. In other words, a packet stream (flow) may be
assembled by sender and recipient. Thus, a flow is an
ordered data stream of a single communication between a
source and a destination.

Capture modules 310 may separate flows by protocols
(e.g., Hyper Text Transfer Protocol (HTTP), File Transfer
Protocol (FTP), Kerberos authentication packets, etc.) based
on, for example, associate TCP port numbers. In addition,
signature filters may be applied to a flow to classify the
protocols based on the transported data itself, rather than the

10

15

20

25

30

35

40

45

50

55

60

65

14

associated port number. Because this protocol classification
is performed independent of which port number was used
during transmission, the capture system monitors and con-
trols traffic that may be operating over non-standard ports.

Capture modules 310 output each flow, organized by
protocol, representing the underlying objects being trans-
mitted. These objects are passed to object classification
module 312 for classification based on content type. A
classified flow may still contain multiple content type
objects depending on the protocol used. For example, a
single flow using HTTP may contain over 100 objects of any
number of content types. To deconstruct the flow, each
object contained in the flow is individually extracted and
decoded, if necessary, by object classification module 312.

Object classification module 312 uses the inherent prop-
erties and/or signature(s) of various documents to determine
the content type of each object. For example, a Word
document has a signature that is distinct from a PowerPoint
document or an email. Object classification module 312
extracts each object and sorts them according to content
type. This classification prevents the transfer of a document
whose file extension or other property has been altered. For
example, a Word document may have its extension changed
from .doc to .dock but the properties and/or signatures of
that Word document remain the same and detectable by
object classification module 312. In other words, object
classification module 312 functions beyond simple exten-
sion filtering.

Object classification module 312 may also determine
whether each object should be stored or discarded. This
determination is based on definable capture rules used by
object classification module 312. For example, a capture rule
may indicate that all Web traffic is to be discarded. Another
capture rule may indicate that all PowerPoint documents
should be stored except for ones originating from the CEO’s
IP address. Such capture rules are implemented as regular
expressions or by other similar means.

Capture rules may be authored by users of a capture
system and, further, may include virtually any item (in
addition to those items discussed herein). The capture sys-
tem may also be made accessible to any network-connected
machine through network interface module 304 and/or user
interface 302. In one embodiment, user interface 302 is a
graphical user interface providing the user with easy access
to the various features of capture system 30. For example,
user interface 302 may provide a capture rule-authoring tool
that allows any capture rule desired to be written. These
rules are then applied by object classification module 312
when determining whether an object should be stored. User
interface 302 may also provide pre-configured capture rules
that the user selects from along with an explanation of the
operation of such standard included capture rules. Generally,
by default, the capture rule(s) implemented by object clas-
sification module 312 captures all objects leaving the net-
work that the capture system can access. If the capture of an
object is mandated by one or more capture rules, object
classification module 312 may determine where in object
store module 320 the captured object should be stored.

With reference to FIG. 4, FIG. 4 illustrates more detailed
views of object store module 320 and index module 330 of
capture system 30, which may also be provided in discover
system 70. According to this embodiment, object store
module 320 includes a tag database 322 and a content store
324. Within content store 324 are files 326 grouped by
content type. For example, if object classification module
312 determines that an object is a Word document that
should be stored, it can store it in file 326 reserved for Word

US 9,430,564 B2

15

documents. Object store module 320 may be internal to a
capture system or external (entirely or in part) using, for
example, some network storage technique such as network
attached storage (NAS), storage area network (SAN), or
other database.

In regards to the tag data structure, in example embodi-
ments, content store 324 is a canonical storage location that
is simply a place to deposit the captured objects. In another
embodiment (as described with reference to discover system
70), pointers to the objects (e.g., stored in a database), rather
than the objects themselves, are stored in content store 324.
The indexing of the objects stored in content store 324 can
be accomplished using tag database 322. Tag database 322
is a database data structure in which each record is a “tag”
that indexes an object in content store 324 and contains
relevant information about the stored object. An example of
a tag record in tag database 322 that indexes an object stored
in content store 324 is set forth in Table 1:

TABLE 1

Field Name Definition (Relevant Information)

MAC Address NIC MAC address

Source IP Source IP address of object

Destination IP Destination IP address of object

Source Port Source port number of object

Destination Port Destination port number of the object

Protocol Protocol that carried the object

Instance Canonical count identifying object within a protocol
capable of carrying multiple data within a
single TCP/IP connection

Content Content type of the object

Encoding Encoding used by the protocol carrying object

Size Size of object

Timestamp Time that the object was captured

Owner User requesting the capture of object (possibly rule
author)

Configuration Capture rule directing the capture of object

Signature Hash signature of object

Tag Signature Hash signature of all preceding tag fields

Attribute One or more attributes related to the object

There are various other possible tag fields and some tag
fields listed in Table 1 may not be used. In an embodiment,
tag database 322 is not implemented as a database and
another data structure is used. The mapping of tags to objects
may be obtained by using unique combinations of tag fields
to construct an object’s name. For example, one such
possible combination is an ordered list of the source IP,
destination IP, source port, destination port, instance, and
timestamp. Many other such combinations, including both
shorter and longer names, are possible. A tag may contain a
pointer to the storage location where the indexed object is
stored. The tag fields shown in Table 1 can be expressed
more generally, to emphasize the underlying information
indicated by the tag fields in various embodiments. Some of
the possible generic tag fields are set forth in Table 2:

TABLE 2
Field Name Definition
Device Identity Identifier of capture device
Source Address Origination Address of object
Destination Address Destination Address of object
Source Port Origination Port of object
Destination Port Destination Port of the object
Protocol Protocol that carried the object
Instance Canonical count identifying object within a protocol

capable of carrying multiple data within a
single connection

20

25

30

35

40

55

60

65

16

TABLE 2-continued
Field Name Definition
Content Content type of the object
Encoding Encoding used by the protocol carrying object
Size Size of object
Timestamp Time that the object was captured
Owner User requesting the capture of object (rule author)
Configuration Capture rule directing the capture of object
Signature Signature of object
Tag Signature Signature of all preceding tag fields
Attribute One or more attributes related to the object

For many of the above tag fields in Tables 1 and 2, the
definition adequately describes the relational data contained
by each field. For the content field, the types of content that
the object can be labeled as are numerous. Content type is
also referred to herein as ‘file type’. Some example choices
for content types (as determined, in one embodiment, by the
object classification module 312) are JPEG, GIF, BMP,
TIFF, PNG (for objects containing images in these various
formats); Skintone (for objects containing images exposing
human skin); PDF, MSWord, Excel, PowerPoint, MSOffice
(for objects in these popular application formats); HTML,
WebMail, SMTP, FTP (for objects captured in these trans-
mission formats); Telnet, Rlogin, Chat (for communication
conducted using these methods); GZIP, ZIP, TAR (for
archives or collections of other objects); Basic_Source,
C++_Source, C_Source, Java_Source, FORTRAN_Source,
Verilog_Source, VHDL._Source, Assembly_Source, Pascal_
Source, Cobol_Source, Ada_Source, Lisp_Source, Perl_
Source, XQuery_Source, Hypertext Markup Language, Cas-
caded Style Sheets, JavaScript, DXF, Spice, Gerber, Math-
ematica, Matlab, AllegroPCB, ViewLogic, TangoPCAD,
BSDL, C_Shell, K_Shell, Bash_Shell, Bourne_Shell, FTP,
Telnet, MSExchange, POP3, RFC822, CVS, CMS, SQL,
RTSP, MIME, PDF, PS (for source, markup, query, descrip-
tive, and design code authored in these high-level program-
ming languages); C Shell, K Shell, Bash Shell (for shell
program scripts); Plaintext (for otherwise unclassified tex-
tual objects); Crypto (for objects that have been encrypted or
that contain cryptographic elements); Englishtext, French-
text, Germantext, Spanishtext, Japanesetext, Chinesetext,
Koreantext, Russiantext (any human language text); Binary
Unknown, ASCII Unknown, and Unknown (as catchall
categories).

The signature contained in the Signature and Tag Signa-
ture fields can be any digest or hash over the object, or some
portion thereof. In one embodiment, a well-known hash,
such as MD35 or SHA1 can be used. In one embodiment, the
signature is a digital cryptographic signature. In one
embodiment, a digital cryptographic signature is a hash
signature that is signed with the private key of capture
system 30. Only capture system 30 knows its own private
key, thus, the integrity of the stored object can be verified by
comparing a hash of the stored object to the signature
decrypted with the public key of capture system 30, the
private and public keys being a public key cryptosystem key
pair. Thus, if a stored object is modified from when it was
originally captured, the modification will cause the com-
parison to fail.

Similarly, the signature over the tag stored in the Tag
Signature field can also be a digital cryptographic signature.
In such an embodiment, the integrity of the tag can also be
verified. In one embodiment, verification of the object using
the signature, and the tag using the tag signature is per-
formed whenever an object is presented, e.g., displayed to a

US 9,430,564 B2

17

user. In one embodiment, if the object or the tag is found to
have been compromised, an alarm is generated to alert the
user that the object displayed may not be identical to the
object originally captured.

When a user searches over the objects captured by capture
system 30, it is desirable to make the search as fast as
possible. One way to speed up searches is to perform
searches over the tag database instead of the content store,
since the content store may be stored on disk, which can be
far more costly in terms of both time and processing power
than to search a database.

The objects and tags stored in object store module 320
may be interactively queried by a search query initiated via
user interface 202 (e.g., through user system 22) of data
manager 20. The objects in the object store module 320 are
searchable for specific textual or graphical content using
exact matches, patterns, keywords, and/or various other
attributes. For example, user interface 202 of data manager
20 may provide a query-authoring tool (not shown) to enable
users to create complex searches of object store module 320.
These search queries are provided to a data-mining engine
(not shown) that parses the queries to object store module
320. For example, tag database 322 may be scanned and the
associated object retrieved from content store 324. Objects
that matched the specific search criteria in the user-authored
query are counted and/or displayed to the user (e.g., by user
interface 202 on user system 22).

Searches may be scheduled to occur at specific times or at
regular intervals. User interface 202 may provide access to
a scheduler (not shown) that periodically executes specific
queries. Reports containing the results of these searches are
made available to the user at runtime or later such as
generating an alarm in the form of an e-mail message, page,
system log, and/or other notification format.

A user query for a pattern is generally in the form of a
regular expression. A regular expression is a string that
describes or matches a set of strings, according to certain
syntax rules. There are various well-known syntax rules
such as the POSIX standard regular expressions and the
PERL scripting language regular expressions. Regular
expressions are used by many text editors and utilities to
search and manipulate bodies of text based on certain
patterns. Regular expressions are well known in the art. For
example, according to one syntax (UNIX), the regular
expression 4\d{15} means the digit “4” followed by any
fifteen digits in a row. This user query would return all
objects containing such a pattern.

Certain useful search categories cannot be defined well by
a single regular expression. As an example, a user may want
to query all emails containing a credit card number. Various
credit card companies used different numbering patterns and
conventions. A card number for each company can be
represented by a regular expression. However, the concept
of credit card number can be represented by a union of all
such regular expressions. For such categories, the concept of
attribute is herein defined. An attribute, in one embodiment,
represents a group of one or more regular expressions (or
other such patterns). The term “attribute” is merely descrip-
tive, such concept could just as easily be termed “regular
expression list” or any other descriptive term.

In one embodiment, the attributes are completely user-
configurable. A user interface provides an attribute editor
that allows a user to define attributes by creating an attribute
and associating a group of one or more regular expressions
with the created attribute. The capture device may come

40

45

18

preconfigured with a list of common or popular attributes
that may be tailored specifically to the industry into which
the capture device is sold.

In one embodiment, capture device 30 may create new
attributes automatically. For example, capture device 30
may observe that a certain regular expression is being
searched with some threshold frequency (generally set to be
above normal). The capture device creates an attribute to be
associated with this regular expression and begins tagging
the newly defined attribute when capturing new objects. In
another embodiment, capture device 30 may suggest that a
new attribute be created when a regular expression is
searched frequently. In yet another embodiment, capture
device 30 may suggest that an attribute be deleted if infre-
quently used to make room for another more useful attribute.
In terms of the query generation, example embodiments of
the present invention allow objects and/or their associated
metadata to be searchable upon request. For example,
emails, documents, images, etc. may be processed by cap-
ture system 30 and searched.

Indexing

FIGS. 4-6 illustrate components, modules, operational
flows, and examples that may be associated with indexing
and searching objects in a capture database (e.g., object store
module 320 of capture system 30). Searching for informa-
tion about captured objects stored on a disk (either local or
networked) is generally slow as each object must first be
retrieved from the disk and then examined against the search
criteria. Searching over the tag database is one way to
accelerate a search query. Another approach, as described
below, includes creating one or more fast storage (such as
Random Access Memory, flash, processor cache, etc.)
indexes containing information (such as metadata informa-
tion and/or keywords) about the objects (and therefore the
content) stored on a disk. Consequently, the task of search-
ing for information regarding captured objects can be per-
formed quicker. Similar indexing and searching techniques
may also be provided for certain objects identified by a
discover system (e.g., discover system 70).

FIG. 4 illustrates additional details of an index module
330 in an example embodiment of capture system 30 uti-
lizing indexing, and which may also be used in discover
system 70 as further described herein. Index module 330 of
capture system 30 includes an indexer 332 to create entries
into keyword indexes 334, which can include a dictionary
(or lists) of keywords found in all captured content (flows,
documents, etc.) and/or entries into metadata indexes (or
lists) 336 based on captured content. In example embodi-
ments, indexer 332 could be a part of object classification
module 312. Keyword indexes 334 may point to a data
structure containing the objects containing the keyword
and/or point to a list of objects containing the keyword. A
keyword is a word, phrase, name, or other alphanumeric
term that exists within common textual content such as an
email, Microsoft Office document, or similar content. Typi-
cally, only currently used indexes are stored in cache or
RAM on the capture device, however, one or more of these
indexes may also be stored on disk either locally or
remotely. The persistence of these indexes to disk may be
done on command or periodically. However, searching is
faster if more indexes are in RAM or other fast storage
device rather than on disk.

Metadata index 336 can be a tree structure for an indi-
vidual property (such as IP address) and a subsequent list of
captured objects in a capture storage device (e.g., object
store module 320) that have said property (such as “trans-
mitted from the specific IP addresses™). Metadata of cap-

US 9,430,564 B2

19

tured objects includes properties describing the network
characteristics of the content containing keywords.
Examples of network characteristics include, but are not
limited to, the source and destination addresses (Internet
Protocol (IP) addresses), time, and date of the transmission,
size, and name of the content, and protocol used to transmit
the content. Additional descriptive properties may be used to
describe the device upon which the content was captured,
the user, the owner, the object type, the object size, the
viewer of the captured content or security settings of the
captured content, or any other suitable metadata. Much of
this information is also found in tags as described earlier.
While keyword index 334 and metadata index 336 are
illustrated as a being separate entities, they may be a part of
a single file per time period.

Because of the two-index system, textual and numeric
properties may be indexed using different indexing algo-
rithms (for example, a keyword index may be a hash list and
a metadata index a B-tree, etc.). Furthermore, metadata
indexes that represent properties that may be enumerated
(that have a limited number of possible values) may use
different algorithms than those with unbounded properties.
An example of an enumerated property is “protocol,” as
there are a limited and known number of protocols that are
supported by a network capture device. An example of an
unbounded property is “size,” as an infinite number of
possible sizes exist for the content that will be captured by
a network capture device.

Indexer 332 can utilize adaptive time-based dictionary
granularity and creates new indexes over time, to therefore
prevent any specific index from growing unbounded.
Accordingly, a specific maximum search time to find an
arbitrary element in a tree or hash list may be maintained.
The temporal basis for creating a new index is determined by
a plurality of factors including, but not limited to: a) the
number of keywords or metadata elements that have been
inserted into the index; b) the number of captured objects
listed in the index; c) the aggregate size of the index; and d)
the aggregate size of captured content being indexed. In an
embodiment, the creation of new indices is additionally
controlled by a user or administrator employing different
heuristics to optimize search performance.

Search engine 314 searches the indexes and returns a list
of captured documents from object storage module 320 that
match specified search criteria. This search (or query)
searches for each criteria component individually to retrieve
a list of tags associated with objects in object storage module
320 for each criteria and then selects only those tags
associated with objects that exist within all returned lists.
Alternatively, selections may be made based on a captured
object not existing within a returned list. An example of such
a selection is the evaluation of the criteria “contains key-
word confidential but not keyword sample.” In this case,
only objects that exist within the first returned list (contains
“confidential”) but not within the second returned list (con-
tains “sample”) would be qualified because of the search.
While search engine 314 is illustrated as a component inside
of capture system 30, it may alternatively exist on an
external system (e.g., data manager 20).

FIG. 5 illustrates an example indexing flow. At step 501,
a packet stream is captured. This packet stream is analyzed
at step 503 and a copy of the object and/or object data is
moved to a storage device at step 505. The capturing and
analyzing of packet streams and moving objects and/or
object data has been previously described. Keyword index
entries for the captured content are created at step 507. This
entry creation is performed by indexer 332 or equivalent.

10

15

20

25

30

35

40

45

50

55

60

65

20

Keyword index 334 may also be created, as necessary, at this
point. Metadata index entries for the captured content are
created at step 509. This entry creation is performed by
indexer 332 or equivalent. Metadata index 336 may also be
created, as necessary, at this point. Thus, captured objects
are stored and indexed such that search queries can be
performed on metadata and/or keywords in a quick and
efficient manner.

FIG. 6 illustrates an example of keyword and metadata
indexes 334 and 336, respectively, at a particular point in
time. Each entry in keyword index 334 includes both a
keyword found in a document and a reference to that
document. For example, keyword index 334 data structure
includes keywords “confidential” and “information.” The
keyword “confidential” was found by the capture system to
be in documents “1” and “3.” Accordingly, keyword index
334 includes references to those documents for “confiden-
tial.” The keyword “information” was found by the capture
system to be in documents “1” and “2.” Accordingly, key-
word index 334 includes references to those documents for
“information.” Similarly, each entry in metadata index 336
data structure includes both metadata data associated with a
document and a reference to that document. For example,
metadata index 336 data structure includes metadata “mail-
from Leopold” (indicating that an email originated from
someone named “Leopold” contained a specific document),
“health care information (HCI)” (indicating that a document
included, generically, HCI), and “PDF” (indicating that a
document was a PDF file).

The use of both a keyword index 334 and a metadata
index 336 allows for queries not possible with either a
traditional keyword or metadata query. For example, by
creating a new index periodically (thereby having multiple
indexes), a query of documents by time in addition to
content is possible. In contrast, while a normal Internet
search engine may be able to determine if a particular
website has a particular keyword, that same search engine
cannot determine if it had that same keyword 15 minutes
ago, 1 week ago, etc. as these search engines employ one
large index that does not account for time.

Additionally, previously there were no queries that could
sort through both keyword and metadata. For example, a
search for an email from a person named “Leopold,” that
contains a PDF attachment, HCI, and includes (either in the
PDF or in the body of the email) the words “confidential”
and “information” was impossible. Database queries only
search for metadata stored in indexed columns (e.g., such as
if the content is a PDF file, mail from information, etc.).
These queries do not account for keywords, in other words,
they cannot search for a particular document containing the
words “confidential” and “information.” Keyword queries
(such as a Google query) cannot search for metadata such as
the metadata described above.

In one embodiment of the data protection workflows
system, captured objects (e.g., objects stored in object store
module 320) meeting search criteria are identified during a
search of the selected database (e.g., object store module
320) by search engine 314. Metadata related to the identified
objects and classification data (e.g., keywords) related to the
identified objects can be stored in object search database 316
of capture module 30. Various metadata could be retrieved
for the captured objects identified by search engine 314
including, for example, device (e.g., capture system 30), file
type, file size, owner, database partition, and mode of
transmission. These examples are not intended to be limiting
and any suitable metadata related to the identified objects
could be retrieved.

US 9,430,564 B2

21

The retrieved metadata and category information can be
stored in object search database 316 of capture system 30.
Data in object search database 316 can be pushed to central
database 230 of data manager 20 and loaded into an OLAP
cube. Analytics could be applied to the OLAP cube and
summaries of the captured objects identified by search
engine 314 according to the search criteria could be gener-
ated and presented in an analytic classification view. Any
suitable combination of retrieved metadata for the identified
objects could be used to present summarized views of the
identified objects over various dimensions (e.g., metadata
and category information).

Discover System

Turning to FIG. 7, FIG. 7 illustrates additional details that
may be associated with discover system 70 of the data
protection workflows system. In operation, discover system
70 can receive a task request (e.g., inventory, classification,
remediation, or registration) from data manager 20 via
control path 26a. These task requests can be initiated, for
example, by a user through user system 22 (shown in FIG.
2). Discover system 70 can perform the requested task on
objects of one or more selected content repositories 40 or
portions thereof (e.g., server shares, partitions, etc.). For
inventory and classification tasks, discover system 70 pro-
vides information (e.g., metadata and category information)
to data manager 20, to which analytics can be applied and
summarized views of the data presented to a user. For
remediation tasks, discover system 70 applies requested
remediation policies to selected subsets of the objects that
are presented in an analytic view. For registration tasks,
discover system 70 registers content of selected subsets of
the objects that are presented in an analytic view. The results
of remediation and registration tasks may be presented to the
user through, for example, a dashboard via user system 22
or other appropriate communication mechanism (e.g.,
reports, emails, alerts, etc.).

Additionally, discover system 70 can fetch objects (e.g.,
documents) from content repositories 40 during, for
example, classification, remediation, and/or registration
tasks and store the fetched objects or pointers to the objects
in a searchable fashion. These fetched objects may be
classified by content type and indexed, and pointers to the
objects (e.g., stored in content repository 40) may be stored
(e.g., in object store module 720 of discover system 70) in
a similar manner as described with reference to FIG. 4 and
capture system 30. Discover system 70 can receive a search
query from a user via control path 265 and can perform a
search of objects, based on search criteria provided by the
user. The search can be performed in a similar manner as the
search described with reference to search engine 314 and
object store module 320. When searching object store mod-
ule 720 of discover system 70, however, once a pointer to an
object has been identified, the pointer may be used to
actually retrieve (or fetch) the associated object from a
content repository.

As shown in FIG. 7, discover system 70 includes various
modules and storage elements for performing inventory,
classification, remediation, and registration tasks and for
performing search queries on object store module 720 for
previously fetched objects. A crawl module 710, an inven-
tory module 740, and a metadata database 742 can enable an
inventory task. A crawl and fetch module 711, a content
classification module 750, and a category information data-
base 752 can enable a classification task. Crawl and fetch
module 711, a remediation module 760, and a remediation
incidents list 762 can enable a remediation task. Crawl and
fetch module 711, a registration system 770, and a registra-

20

35

40

45

50

55

22

tion database 772 containing a registration list 774 and an
index table 776 can enable a registration task. Finally, crawl
and fetch module 711, an object classification module 712,
object store module 720, index module 730, a search engine
714, and an object search database 716 can enable content
type classification, indexing and storing objects (or pointers
to the objects) fetched from content repositories 40 and can
enable subsequent search queries over the previously
fetched objects. A user interface 702, a network interface
704, a processor a 706, and a memory element 708 may also
be provided in discover system 70 to facilitate the operations
related to the various modules and other components.

If a user selects an inventory task for content repositories
40 (or shares of content repositories 40), task module 224 of
data manager 20 can communicate an inventory task request
via control path 26a to discover system 70. Crawl module
710 crawls the content repositories 40 (or selected shares
thereof) and retrieves metadata associated with stored
objects. As used herein, ‘crawling’ refers to searching a
targeted location in a suitable manner to identify (or dis-
cover) objects stored in the targeted location (e.g., a par-
ticular content repository, a particular share of a server, etc.).
Accordingly, crawl module 710 searches selected content
repositories 40 and identifies objects stored in selected
content repositories 40. Additionally, crawl module 710 can
retrieve metadata associated with the identified objects.

For each object identified by crawl module 710, metadata
associated with the identified object can be retrieved and
inventory module 740 can store the metadata in metadata
database 742. By compiling sets of metadata elements for
each object, an inventory of objects (e.g., a raw file inven-
tory or incremental file listing) can be produced. An inven-
tory of objects is a compiled list of objects from a defined
data storage location (e.g., one or more selected content
repositories, one or more selected shares of a server, all
content repositories of a network, one or more selected
workstations, etc.), where each object can be represented by
data or a set of data that identifies the object. In one example
implementation, a set of metadata elements that represents
an object can include a device (e.g., the particular discover
system crawling the repository), a content repository (e.g.,
the particular server where the object is stored), a share (e.g.,
the logical data structure in the server where the object is
stored), a file type (e.g., actual file type of the object such as
portable document format (.pdf), Word document (.doc),
Excel spreadsheet (.xls), C programming language code (.c),
hypertext markup language (html), etc.), an owner of the
file (e.g., user or system identification), and a file size (e.g.,
byte size).

In example embodiments, metadata database 742 can be
a structured query language (SQL) table instantiated in
discover system 70. An extract, transform, and load (ETL)
process can be employed to extract the metadata from
metadata database 742 and load it into central database 230
of data manager 20, which can contain aggregated metadata
from multiple discover systems, which could each obtain
metadata of objects from any number of content reposito-
ries. In alternative embodiments, metadata database 742
could be implemented separately from discover system 70 in
any other suitable data storage element.

A classification task can be created by a user from an
analytic inventory or classification view of data resulting
from an inventory task or classification task, respectively.
Alternatively, a classification task can be independently
created (e.g., without relying on summarized views of data
from a previous task). In either scenario, example embodi-
ments can be implemented such that a classification task can

US 9,430,564 B2

23

be created through a user system of a data manager (e.g.,
user system 22 of data manager 20) and instantiated on
discover system 70. Task module 224 of data manager 20
can communicate the classification task request to discover
system 70 via control path 26a, including parameters
selected during the classification task creation from an
analytic view of data (inventory or classification) or includ-
ing parameters selected during an independent task creation.
After receiving the classification task request and associated
parameters, crawl and fetch module 711 crawls the appro-
priate content repositories (or selected shares thereof) and
fetches identified objects. Content repositories 40 are
searched and objects are identified therein based on the
parameters provided with the classification task.

For each object identified by crawl and fetch module 711,
the actual object itself can be fetched and stored in tempo-
rary storage while content classification module 750 ana-
lyzes the contents of the object and classifies the object
based on selected and/or default categories. Generally, cat-
egories represent a class of ideas, terms, or things that can
be used to distinguish between objects. Classification puts
objects into buckets labeled with the categories. Example
buckets could include legal documents, confidential data,
manufacturing processes, etc. These labels may be applied
to objects based on the contents of the objects. In one
example scenario, for 200 objects having a C source code
file type, only 10 of those objects contain crypto algorithms
and therefore, only those 10 objects are placed in the ‘crypto
code’ bucket (i.e., classified as ‘crypto code’).

Categories may be stored in a categories database 50,
which can be provided in a memory element in each
discover system 70 or data manager 20, or otherwise suit-
ably provisioned in network 10 or in another network or a
cloud accessible to discover system 70, such as through
Internet 19. Categories can include standard predefined
categories, user-defined categories, or any suitable combi-
nation thereof.

In one embodiment, categories can be implemented using
a concept building protocol. Concepts can include a collec-
tion of expressions and a dictionary of terms having a
mathematical relationship. An expression is a pattern of
characters defining a particular item and a term is a textual
token that often appears in proximity to another expression.
For example, a drivers’ license concept may include a set of
expressions supporting different numerical representations
of drivers’ license numbers, for example:

Expression 0: [A-Z]\d\d\d\d\d\d\d\D

Expression 1: [A-Z]\d\d\d\d\d\d\d\d\d\D

Expression 2: [A-Z]\dM\d\d\d\d\d\d\d\d\D\d\D

Expression 3: [A-Z]\dA\d\d\d\d\d\d\d\d\d\d\d\D
Terms commonly used when specifying a drivers’ license
could include, for example:

Term Expression 0: \iDrivers.\ Lic\p

Term Expression 1: \D\.\ Lic\p

Term Expression 2: \iDriver.s\ Lic\p

Term Expression 3: \iDriver\ ’s\ License\p

Term Expression 4: \iDrivers\ License\p

In the drivers’ license concept example above, an object
may be placed in the drivers’ license bucket (classified as a
drivers’ license document) if any of the expressions for the
numerical representation of a drivers’ license number is
found in the object within a predefined proximity of one or
more of the terms.

A data protection workflows system can be configured
with any number (e.g., hundreds) of concepts, with associ-
ated expressions and terms, covering U.S. (and foreign)
government regulations, health codes, legal matters, medical

25

40

45

50

55

24

diagnoses, employee compensation and benefits, confiden-
tial information, financial information, etc. The system may
be configured to allow users to create additional concepts
with associated expressions and terms and conditions (e.g.,
proximity of expressions and terms of a concept) to be
satisfied in order for an object to be classified based on a
category (or concept).

When an object has been classified according to one or
more concepts (i.e., the object has been analyzed and
determined to contain expressions and terms of the concept
in accordance with any required conditions), object category
information can be stored in category information database
752, which can be a SQL table instantiated in discover
system 70. The object category information can be any
suitable data that indicates the particular category or cat-
egories associated with the object. In addition, metadata
associated with the classified objects may also be stored in
database 752. In one example the stored metadata can be
configured as sets of metadata elements that represent
respective objects. The metadata and category information
of category information database 752 can be extracted and
loaded, using an ETL process, for example, into central
database 230 of data manager 20. Central database 230 may
contain aggregated metadata and category information of
objects from multiple discover systems, which could each
obtain metadata and category information of objects from
any number of content repositories. In alternative embodi-
ments, metadata database 742 could be combined with
category information database 752 and the combined data-
base could be implemented separately from discover system
70 in any other suitable data storage element.

Discover system 70 may also classify (based on content
type), index, and store objects (or pointers to objects) when
crawl and fetch module 711 fetches objects from content
repositories 40. Discover system 70 may include object
classification module 712, object store module 720, index
module 730, and search engine 714. In example embodi-
ments, these modules and the search engine may be config-
ured similarly to object classification module 312, object
store module 320, index module 330, and search engine 314
of capture system 30, previously described herein.

Object classification module 712 of discover system 70
receives objects fetched from content repositories 40 (as
opposed to reassembled objects extracted from a network
flow in capture system 30). Object classification module 712
can also use the inherent properties and/or signature(s) of
various documents to determine the content type of each
fetched object and can sort the objects according to content
type. Object store module 720 can be configured in a similar
manner to object store module 320 (shown in FIG. 4),
including a content store that groups files by content type.
However, a content store of object store module 720 may
store pointers to objects in content repositories, rather than
the actual objects themselves. Additionally, the objects
fetched from content repositories may not have an associ-
ated tag as many tag fields of captured objects do not apply
to fetched objects from content repositories. Object store
module 720 may be internal to a discover system or external
(entirely or in part) using, for example, some network
storage technique such as network attached storage (NAS),
storage area network (SAN), or other database.

Index module 730 of discover system 70 may be config-
ured in a similar manner to index module 330 of capture
system 30 (shown in FIG. 4), including an indexer, keyword
indexes, and metadata indexes. Like indexer 332, the
indexer of index module 730 can create entries into keyword
indexes consisting of a dictionary (or lists) of keywords

US 9,430,564 B2

25

found in the content of fetched objects and/or entries into
metadata indexes (or lists) based on metadata of the fetched
objects. In one embodiment, a keyword can indicate a
category, for example, as a term of a concept. Keyword
indexes of index module 730 can be configured similarly to
keyword indexes 334, and may point to a data structure
containing the objects that contain the keyword and/or point
to a list of objects (or pointers to objects) that contain the
keyword.

Metadata indexes of index module 730 can also be
configured similarly to metadata indexes 336, for example,
as a tree structure for an individual property (such as a
network address of a content repository) and a subsequent
list of fetched objects in a data storage location that have
said property (such as “stored in the specific content reposi-
tory”). Additionally, metadata elements of metadata indexes
in discover system 70 may include properties describing the
objects containing keywords. Examples of such properties
include, but are not limited to, device associated with a
content repository where the object is stored (e.g., discover
device 70), content repository where the object is stored,
share where the object is stored, and file type, file name, file
owner, and file size of the object. Keyword indexes and
metadata indexes may be separate entities or combined into
a single entity.

Search engine 714 of discover system 70 may perform
searches in a similar manner as previously described herein
with reference to search engine 314 of capture system 30.
Search engine 714 can search the indexes and return a list of
objects from content repositories 40 that match specified
search criteria. This list can include object pointers from
object store module 720 that point to the stored objects in
content repositories 40. In other embodiments, the objects
fetched from content repositories 40 could be stored in
object store module 720 just as captured objects are stored
in object store module 320 of capture system 30.

Search engine 714 can search for each search criterion
individually to retrieve a list of pointers (or other suitable
identifiers) associated with objects stored in content reposi-
tories 40 that satisfy a particular criterion. Once pointer lists
have been obtained for each criterion, then only those
pointers that exist within all returned lists may be selected.
Alternatively, selections may be made based on a pointer to
an object not existing within a returned list. An example of
such a selection is the evaluation of the criteria “contains
keyword confidential but not keyword sample.” In this case,
only pointers to objects that exist within the first returned list
(contains “confidential”) but not within the second returned
list (contains “sample”) would be qualified because of the
search. While search engine 714 is illustrated as a compo-
nent inside of discover system 70, it may alternatively exist
on an external system (e.g., data manager 20).

Search engine 714 can store results of a search query in
object search database 716. In example embodiments, object
search database 716 can store metadata (e.g., content reposi-
tory, share, file type, etc.) and category information (e.g.,
keywords or other information indicating the keywords)
associated with each identified object. In one embodiment,
object search database 716 can be configured as an SQL
table instantiated on discover system 70. An ETL process
can be employed to extract data from object search database
716 and load it into central database 230 of data manager 20.
Central database 230 can contain aggregated data from
search queries performed by multiple discover systems on
multiple databases (e.g., object store modules instantiated on

10

20

40

45

55

26

each discover system) containing indexed objects (or point-
ers to indexed objects) fetched from one or more content
repositories.

Search query data loaded into central database 230 can be
processed similarly to classification task data. Search query
data can be loaded into an OLAP cube and analytics can be
applied to generate summaries of the data and present a
classification view of the search query data to a user. Such
searches may be preferable to classification tasks in certain
cases. For example, when a classification task is performed
on a desired set of objects, the desired set of objects can be
indexed and pointers to the objects can be stored in object
store module 720. A search query over object store module
720 may then be used to further classify the objects and
present additional information to a user through another
classification view. In this instance, the search query may be
performed rather than another classification task, because a
classification task may use significantly more processing
resources to crawl and fetch objects from content reposito-
ries than a search query uses when searching over the
indexed data in object store module 720.

Consider one example scenario. If a classification task has
been performed to categorize Health Insurance Portability
and Accountability Act (HIPAA) documents on a particular
share of a content repository, then object store module 720
could be loaded with indexed HIPAA classified objects from
the particular share. If a user then wants to understand the set
of HIPAA objects on the share, the user may simply query
the index of object store module 720 (e.g., by initiating a
search query) with the additional desired classification terms
(e.g., XYZ Corp. Confidential’). Thus, this subsequent
classification (into HIPAA documents from the desired share
that contain ‘XYZ Corp. Confidential’) may be performed
more efficiently by instantiating a search query rather than
another classification task in which the targeted share would
be crawled again and identified objects would be fetched
again.

A remediation task can be created by a user and can be
derived from an analytic inventory or classification view of
data. The remediation task can be created through a user
system of a data manager (e.g., user system 22 of data
manager 20) and instantiated on discover system 70. Task
module 224 of data manager 20 can communicate a reme-
diation task request to discover system 70 via control path
26a, including parameters that were automatically populated
or manually selected during the task creation. Parameters
can include criteria for identifying objects or subsets of
objects to be remediated (e.g., metadata and/or category
information) and remediation policies that indicate actions
to be applied to the identified objects or otherwise per-
formed.

After receiving the remediation task request and associ-
ated parameters, crawl and fetch module 711 crawls the
appropriate content repositories (or selected shares thereof)
and identifies objects based on the parameters provided with
the remediation task. Remediation policies could include
any suitable actions allowed by an enterprise or authorized
user of the system. Example remediation policies could
include reporting findings, alerting an appropriate adminis-
trator or other user, encrypting objects or particular content
of objects, fingerprinting objects or particular portions of
objects, deleting objects, moving objects, quarantining
objects, or modifying content of objects. Such remediation
actions are provided for illustrative purposes and accord-
ingly, any other suitable remediation actions could also be
implemented in remediation policies of the system.

US 9,430,564 B2

27

For each object identified by crawl and fetch module 711,
the actual object itself may be fetched, depending on the
particular remediation policy being applied. For example, a
remediation policy to delete selected objects may simply
delete the identified objects from the content repository, and
therefore, such objects may not be fetched from the content
repository. In another example, a remediation task could be
created to apply a policy to objects that requires analysis of
the contents in the objects (e.g., HIPAA policy). Accord-
ingly, when objects are identified in content repositories 40
by crawl and fetch module 711, the identified objects may be
fetched and provided to object classification module 712 for
classifying (based on content type), indexing, and storing
activities. The analysis activities may be performed on the
fetched object or on data in object store module 720.
Additionally, other remediation actions such as encryption
may be performed on the fetched objects and the newly
encrypted objects could be stored in content repositories 40
to replace the corresponding unencrypted objects.

Remediation module 760 can store incidents (or results)
from applying the remediation policy in remediation inci-
dents list 762. For example, if a remediation task includes a
remediation policy to encrypt certain objects (e.g., objects
with a social security number), then each time an object is
identified that matches the specified parameters, an incident
can be created and stored in remediation incidents list 762.
Incidents can include any suitable information related to
applying the remediation policy such as, for example, iden-
tification of the remediated object, actions performed, date
and time stamp, etc. The incidents can then be presented to
a user, for example, via a dashboard view on user system 22,
in any suitable format.

A registration task can be created by a user and can be
derived from an analytic inventory or classification view of
data. The registration task can be created through a user
system of a data manager (e.g., user system 22 of data
manager 20) and instantiated on discover system 70. Task
module 224 of data manager 20 can communicate a regis-
tration task request to discover system 70 via control path
264, including parameters that were automatically populated
or manually selected during the registration task creation.
Parameters can include criteria for identifying objects or
subsets of objects to be registered (e.g., metadata and/or
category information).

After receiving the registration task and associated param-
eters, crawl and fetch module 711 crawls the appropriate
content repositories 40 (or selected shares thereof) and
identifies objects based on the parameters provided with the
registration task. For each object identified by crawl and
fetch module 711, the actual object itself can be fetched.
Accordingly, when objects are identified in content reposi-
tories 40 by crawl and fetch module 711 for a registration
task, the identified objects may be fetched and provided to
object classification module 712 for classifying (based on
content type), indexing, and storing activities.

Registration system 770 could be configured to imple-
ment any suitable registration techniques in a data protection
workflows system. Generally, registration system 770 can be
implemented to create a signature set of some content in an
object to be registered such that the original content can be
detected (e.g., if the registered object is attached to an email
being sent out of the network) and a plagiarized form of the
content can be detected (e.g., if the original content is copied
and pasted into another document that is attached to an
email).

In one example embodiment of a registration technique
that is further described herein with reference to FIGS.

40

45

55

65

28

13-18, registration system 770 identifies and registers com-
binations of information that could reveal confidential or
sensitive information (e.g., name, address, phone number,
and social security number). In this embodiment, registra-
tion system 770 generates tuples for combinations of infor-
mation in an object and builds an internal numerical repre-
sentation and a corresponding index such that the presence
of any transformed or transmuted representation of the
original data can be detected. The numerical representation
and index can be stored in registration list 774 and index
table 776, respectively.

Another registration technique provides for calculating a
signature or a set of signatures of an object. A signature
associated with an object may be calculated in various ways.
An example signature consists of hashes over various por-
tions of the object, such as selected or all pages, paragraphs,
tables and sentences. Other possible signatures include, but
are not limited to, hashes over embedded content, indices,
headers, footers, formatting information, or font utilization.
A signature may also include computations and metadata
other than hashes, such as word Relative Frequency Meth-
ods (RFM)—Statistical, Karp-Rabin Greedy-String-Tiling-
Transposition, vector space models, diagrammatic structure
analysis, etc.

The signature or set of signatures associated with an
object can be stored in a signature database (not shown). The
signature storage may be implemented as a database or other
appropriate data structure as described earlier. In example
embodiments, the storage database is external to discover
system 70. Pointers to registered documents in content
repositories 40 can be stored as pointers in object store
module 720 according to the rules set for the system. In other
embodiments, registered documents can be stored as objects
in object store module 720. In example embodiments, only
documents or pointers are stored in object store module 720,
as these documents have no associated tag since many tag
fields may not apply to registered documents.

When registration module 770 has completed a registra-
tion task, the results of the registration process can be
presented to a user, for example, via a dashboard on user
system 22 in any suitable format.

Data Protection Workflows

Turning to FIG. 8, FIG. 8 illustrates a high level flow 800
of possible operations that may be associated with a data
protection workflows system. Flow 800 illustrates opera-
tions that could occur in data manager 20 and discover
system 70. Flow begins at 802 where an inventory or
classification task is created. The task can be created in data
manager 20 and communicated to discover system 70 on
control path 26a along with associated parameters indicating
what repositories (or shares) should be searched. Once the
task and associated parameters are received by discover
system 70, repositories or shares of repositories indicated by
the parameters can be crawled at 804. If the task is a
classification task, then at 806, objects identified during the
crawl can be fetched and classified according to predefined
categories, which could be default categories or categories
selected by a user.

Analytics can be applied to the inventory or classification
data and summarized views of the data can be presented to
a user at 808. The presentation can occur in data manager 20
on, for example, user system 22. If a classification task is
created at 810 (e.g., on top of an inventory view or a
classification view), then task filters can be refined at 812
(e.g., an inventory or classification view can be drilled down
to select one or more subsets of objects and/or categories not
previously used to classify the objects can be selected). The

US 9,430,564 B2

29

classification task request and refined filters (or parameters)
are communicated to discover system 70, and flow passes
back to 804 where the repositories or shares of repositories
indicated by the refined parameters can be crawled.

If a classification task is not created at 810, then if a
registration task is created, as determined at 812, flow passes
to 822 where task filters can be refined (e.g., an inventory or
classification view can be drilled down to select one or more
subsets of objects to be registered). The registration task
request and associated parameters can be communicated to
discover system 70 on control path 26a. Once the registra-
tion task and associated parameters are received by discover
system 70, the repositories or shares of repositories indi-
cated by the parameters can be crawled at 824. The objects
identified on the repositories can be fetched and registered at
826.

If a registration task is not created, as determined at 812,
then if a remediation task is created as determined at 814,
flow passes to 816 where task filters can be refined (e.g., an
inventory or classification view can be drilled down to select
one or more subsets of objects to be remediated). In addition,
a remediation policy can be selected to apply to the selected
one or more subsets of objects. The remediation task request
and associated parameters, including the remediation policy,
can be communicated to discover system 70 on control path
26a. Once the remediation task request and associated
parameters, including the remediation policy, are received
by discover system 70, the repositories or shares of reposi-
tories indicated by the parameters can be crawled at 818. The
objects identified on the repositories can be fetched, depend-
ing on the particular remediation policy being applied, and
can be appropriately remediated at 820 in accordance with
the selected remediation policy.

Turning to FIGS. 9A-9B, more detailed workflows 900, of
possible operations and data flow that may be associated
with a data protection workflows system are illustrated,
which could occur in data manager 20, discover system 70,
and capture system 30. Numerous workflow scenarios are
possible with the data protection system. In one typical
workflow, a user can begin with an inventory task to
generate a raw inventory of objects, apply analytics to the
inventory, create a classification task, and then potentially
create a protection task for selected data. In another work-
flow, a user can begin with an inventory task to generate a
raw inventory of objects, apply analytics to the inventory,
and then potentially create a protection task for selected
data. In yet another possible workflow, a user can create a
classification task to generate classification data of objects
based on selected parameters, apply analytics to the classi-
fication data, and potentially create a protection task for
selected data. In an additional workflow, a user can create a
search definition (e.g., on top of a classification view) to
generate classification data of objects based on the search
criteria, apply analytics, and potentially create a protection
task for selected data. Moreover, other tasks, searches, and
manipulations of inventory views and/or classification views
of the data may also be included in any of the above-
identified workflows.

With reference to FIG. 9A, flow begins at 901 where a
search definition may be created or refined. A search defi-
nition can be created based on metadata and/or categories
(e.g., keywords) and can be performed on captured objects
in object store module 320 of capture database 30 or on
object store module 720 of discover system 70. In a typical
workflow scenario involving data at rest (e.g., data in
content repositories), one or more classification (and possi-
bly remediation and/or registration) tasks are generally

10

15

20

25

30

35

40

45

50

55

60

65

30

created and performed before a search is requested, because
during the classification (and remediation and registration)
task, objects are fetched, indexed, and appropriately stored
(e.g., pointers) such that searches may subsequently be
performed over the indexed objects. For data in motion (e.g.,
objects from network traffic stored in capture databases such
as object store module 320), however, a search definition
could be created anytime in order to see a summarized view
of objects captured and extracted from network traffic.

A task definition may also be created or refined at 901. In
example embodiments described herein, tasks can include
inventory, classification, remediation, and registration. An
inventory task can be independently instantiated and can be
performed on a selected location of stored objects (e.g.,
repositories or server shares). A classification task can be
derived from an analytic view (either an inventory view or
another classification view), or alternatively, can be inde-
pendently instantiated. Registration and remediation tasks
can also be derived from analytic inventory or classification
views.

Inventory and classification tasks are generally the tasks
that retrieve data (e.g., sets of metadata) from selected
content repositories or shares to generate summaries of the
associated objects, which can be presented in summarized
views (inventory or classification) by dimensions of interest.
Presentations of analytical summaries over a raw inventory
of objects (‘inventory view' or ‘analytic inventory view’)
and/or analytical classification summaries (‘classification
view' or ‘analytic classification view’) can reveal the distri-
bution of objects (e.g., files) across various data storage
locations and the quantification of the objects and subsets of
the objects in the data storage locations. Users can manipu-
late the views by selecting different dimension groups in
order to generate different summaries of the objects such as
counts and combined sizes of subsets of the objects associ-
ated with different combinations of metadata elements. A
dimension group represents a group of specific metadata
elements associated with the same type of metadata. For
example, pdf, xls, doc, html, c, and cpp are file types and
could be grouped together to form a dimension group of file
types. When a user finds a meaningful view of assets by
‘drilling down’ dimension groups (e.g., a large number of
certain program files on a particular share, a large number of
certain program files classified as ‘confidential’, etc.), then
the user can create a remediation task or a registration task
over the meaningful view (which could be one or more
subsets of objects presented in either an inventory or clas-
sification view), if desired, to protect the data in the one or
more subsets of objects that define the meaningful view.

In one potential workflow scenario a user may initially
create an inventory task at 901. There is no search definition
as determined at 902, and 903 directs the inventory task flow
to 910 where an inventory task request and associated
parameters are communicated to discover system 70 via
control path 26a. Parameters can include content reposito-
ries or particular shares of content repositories to be targeted
for the inventory task. In one example, a range of network
addresses (e.g., IP addresses) may be provided for an inven-
tory task to be performed on multiple content repositories
(e.g., a cluster of file servers), with each server potentially
containing multiple shares.

The selected content repositories or shares indicated by
the parameters can be crawled at 911 to obtain a raw
inventory of objects, which can comprise a listing of sets of
metadata elements. In example implementations, each set of
metadata elements represents one of the objects identified
during the crawl and each metadata element in a set is a

US 9,430,564 B2

31

distinct type of metadata. Example types of metadata
include, but are not limited to, device, content repository,
share of content repository, file type, file owner, and file size.
A task type initiating the crawl and generating the data for
the analytic summaries could also be tracked.

The metadata retrieved from crawling can be stored in
metadata database 742. The metadata is then extracted and
loaded into central database 230 of data manager 20, which
could be merged with metadata from other metadata data-
bases associated with other distributed discover systems and
content repositories in the network or in other associated
networks. For example, if multiple content repositories,
accessed by different discover systems, were specified in the
inventory task parameters, the inventory task requests could
be communicated to multiple discover systems and, subse-
quently, each of the multiple discover systems could load
central database 230 with their respective inventory meta-
data.

At 904 an OLAP cube is generated and populated with
metadata from central database 230. The OLAP cube drives
the analytics to generate summaries of the inventoried
objects by various dimensions at 905. The summaries can be
used to create and present an inventory view to a user at 906.
In example embodiments, the presentation can be a GUI
display screen that allows the user to manipulate the inven-
tory view by drilling down into different dimension groups
of the data in order to see different inventory views of the
data. The GUI display screen may also be configured to
allow a user to slice and dice different dimensions and/or
specific metadata elements to obtain a focused view of
particular objects.

Initially, an inventory view could display a total count
indicating the total number of inventoried objects repre-
sented in the current inventory view and a total size indi-
cating the total combined size of all of the inventoried
objects. Dimensions of the inventoried objects can be dis-
played in a hierarchical order (e.g., from left to right), which
can be selectively reordered by a user to obtain a different
view of the data. For ease of explanation with regard to FIG.
9, assume that dimensions are displayed in the following
order, with the first dimension being at the top of the
hierarchy: Device, Repository, Share, File Type, File Owner,
and File Size.

A user can manipulate the inventory view by drilling
down a dimension group. That is, if the user selects a
dimension group at 907, such as a device dimension group,
then analytics can be applied to the OLAP cube at 905 and
new summaries can be generated for each of the devices (of
the selected devices dimension group). Thus, the summaries
can be used to create a different inventory view that can be
presented to the user at 906. In this scenario, a total count
and total size can be computed and listed for each subset of
objects associated with one of the enumerated devices.

If a user selects another dimension group at 907, such as
a repositories dimension group that corresponds to one of
the enumerated devices (e.g., ‘DISCOVER DEVICE-1’),
then analytics can be applied to the OLAP cube at 905 and
new summaries can be generated for each of the repositories
(of the selected repositories dimension group) associated
with DISCOVER DEVICE-1. Thus, the summaries can be
used to create a different inventory view that can be pre-
sented to the user at 906. In this scenario, a total count and
total size can be computed and listed for each subset of
objects identified in one of the enumerated content reposi-
tories crawled by DISCOVER DEVICE-1.

In yet another example of manipulating the view by
drilling down, if the user selects a file types dimension group

10

15

20

25

30

35

40

45

50

55

60

65

32

at 907 that corresponds to one of the enumerated content
repositories (e.g., ‘DIANA’), then analytics can be applied to
the OLAP cube. New summaries can be generated at 905 for
each of the file types (of the selected file types dimension
group) associated with the DIANA content repository and
the corresponding DISCOVER DEVICE-1. The summaries
can be used to create a different inventory view that can be
presented to the user at 906. In this scenario, a total count
and total size can be computed and listed for each new
subset of objects having one of the enumerated file types,
which were identified in the DIANA content repository
crawled by DISCOVER DEVICE-1 during the inventory
task.

A classification, remediation, or registration task can be
created on top of an inventory view presented at 906. In
particular, if a user is presented with a meaningful analytic
view at 906, which could be either an initial inventory view
or any subsequent manipulated view, the user can create a
classification, remediation, or registration task using data
from that view. Accordingly, if the user does not manipulate
the inventory view at 907, flow passes back to 901 where the
user can create or refine a new task or search definition. As
previously explained herein, a search definition typically
may not be created for data at rest until a classification task
has been performed. If the previous task was an inventory
task, however, a search definition could be created for
different data (e.g., data in motion captured by a capture
system, data at rest fetched and stored by a previous task
other than an inventory task).

If a classification task is created at 901, it can be created
from an inventory or classification view presented at 906, or
it can be independently instantiated (i.e., created indepen-
dently without incorporating data from a previous task). To
create a classification task from an inventory or classifica-
tion view, a user can select a classification option for a subset
(or multiple subsets) of the inventoried or classified objects,
where each object in the subset is associated with a desired
combination of metadata elements and possibly one or more
categories, and where each object in the subset is associated
with the same metadata element for at least one of the types
of metadata (e.g., each object of one subset is owned by the
CEO, each object of another subset is an Excel file and is
located on a content repository for the Finance Department,
each object of yet another subset is classified as a HIPPA
document, etc.). The metadata elements may be presented in
a desired hierarchical arrangement of dimensions. From an
inventory or classification view, a user can manipulate the
view by drilling down one or more dimension groups and/or
slicing and dicing dimensions and/or specific metadata ele-
ments until a view is presented with a combination of
metadata elements representing a desired subset (or multiple
combinations representing multiple subsets) of the objects.
In one example, the user can then create a classification task
for the subset (or multiple subsets) presented in the manipu-
lated view by selecting a classification option (e.g., by
activating a classification clickable).

Selecting the classification option can then produce
another display screen in which parameters for the classifi-
cation task are automatically populated from the selected
subset (or subsets) of the previous screen. Parameters can
include metadata elements specifying a location of the
objects to be classified (e.g., content repositories, shares,
devices) and other metadata elements associated with the
selected subset. The combination of metadata elements may
also be independently selected or refined by a user. In
addition, if the classification task is derived from a classi-
fication view (resulting from a previous classification task or

US 9,430,564 B2

33

a search query) then the category information associated
with the selected subsets can populate the parameters for the
new classification task. That is, classified objects can be
further classified. Furthermore, the user could potentially
adjust the conditions and values of the metadata elements
associated with the targeted objects.

Example combinations of metadata elements for a clas-
sification task could include: 1) objects having a particular
file type on selected content repositories (e.g., all Micro-
soft® Office documents such as files ending in .doc, .docx,
Xls, .pdf, and .ppt, on a file server for a legal department),
2) objects having a particular owner on a particular share of
a content repository, 3) objects on a particular share of a
content repository, 4) objects having particular file types and
a particular owner on any content repository searched by a
particular discover device (e.g., files ending in .c or .cpp
owned by a particular software engineer), etc.

When a classification task is created at 901 and there is no
search definition as determined at 902, then at 903 the
classification task flow is directed to 920 where a classifi-
cation task request and associated parameters are commu-
nicated to discover system 70 via control path 26a. When
discover system 70 receives the classification task param-
eters, the selected one or more content repositories (or
shares) indicated by the parameters can be crawled at 921 to
identify and fetch objects associated with the other param-
eters (e.g., file type, owner, file size). When an object
matching the all of the classification task parameters is
identified, its contents can be fetched from the content
repository. The object can be classified by content type at
922 and its content signatures can be analyzed at 923
according to policies of policy engine 960. The fetched
object is classified according to type, as previously
described herein with reference to object classification mod-
ule 712 of discover system 70. Additionally, the fetched
object can be indexed by metadata and keywords as previ-
ously described herein with reference to index module 730
of discover system 70. A pointer to the location in the
content repository where the fetched object was stored can
be stored in object store module 720.

After the fetched object has been classified by type,
analyzed, indexed and suitably stored, at 924 content clas-
sification module 750 of discover system 70 can classify the
fetched object based on one or more categories by evaluat-
ing the object’s content. In example embodiments, content
classification can be accomplished by using predefined
categories (default categories and/or categories created by
an authorized user) that may be selected by the user when
creating the classification task. Each object can be evaluated
and classified based on one or more of the selected catego-
ries. Sets of metadata representing each of the objects and
the corresponding category information associated with
each of the objects can be stored in category information
database 752. The sets of metadata elements and the corre-
sponding category information for the objects is then
extracted and loaded into central database 230, which could
be merged with metadata and category information from
other discover systems distributed in the network or in other
associated networks.

At 904 an OLAP cube is generated and populated with
metadata and category information from central database
230. The OLAP cube drives the analytics to generate sum-
maries of the classified objects by various dimensions at
905. The summaries can be used to create and present a
classification view to a user at 906. In example embodi-
ments, the presentation can be a GUI display screen that
allows the user to manipulate the classification view by

10

15

20

25

30

35

40

45

50

55

60

65

34

drilling down into different dimension groups in order to see
different classification views. The GUI display screen may
also be configured to allow a user to slice and dice different
dimensions and/or specific metadata elements, including
particular categories, to obtain a focused view of particular
objects.

Initially, a classification view could list each category
associated with one or more of the classified objects. For
each category, a corresponding total count could indicate the
total number of objects identified during the classification
task crawl that were classified in that category. The total size
could indicate the total combined size of those classified
objects.

If a user manipulates the view by selecting a particular
dimension group at 907, such as a repositories dimension
group that corresponds to a particular category (e.g., Health
Insurance Portability and Accountability Act (HIPAA)), then
analytics can be applied to the OLAP cube at 905 and new
summaries can be generated for objects associated with each
of the repositories (of the selected repositories dimension
group) and classified as HIPPA documents. Thus, the sum-
maries can be used to create a different classification view
that can be presented to the user at 906. In this scenario, a
total count and total size can be computed and listed for each
new subset of objects identified in one of the enumerated
content repositories (of the selected repositories dimension
group) and classified as HIPPA documents.

If a user selects another dimension group at 907, such as
a file owner dimension group) that corresponds to one of the
enumerated content repositories (e.g., ‘DIANA’) and to one
of the categories (e.g., HIPPA) in the classification view,
then analytics can be applied to the OLAP cube. New
summaries can be generated at 905 for objects associated
with each of the file owners (of the selected file owners
dimension group), the DIANA content repository, and the
HIPPA category. The summaries can be used to create a
different classification view that can be presented to the user
at 906. In this scenario, the total count and total size can be
computed and listed for each new subset of the objects,
which are classified as HIPPA documents and associated
with one of the enumerated file owners (of the selected file
owners dimension group) and the DIANA content reposi-
tory.

A remediation or registration task can be created on top of
a classification view presented at 906. In particular, if a user
is presented with a meaningful analytic view at 906, which
could be either an initial classification view or any subse-
quent manipulated view, the user can create a remediation or
registration task using data from that view. Alternatively, a
user may create a search definition to search object store
module 720 that has been loaded with objects (or pointers to
objects) fetched during the classification task. Accordingly,
if the user does not manipulate the classification view at 907,
flow passes back to 901 where the user can create or refine
a new task or search definition.

A search definition may be used, when possible, to more
quickly analyze objects by avoiding the use of resources
needed to crawl content repositories and fetch objects from
them. A search definition could be defined at 901 to search
objects that were fetched during a previous task (e.g., a
classification task), indexed (e.g., in index module 730), and
stored (e.g., objects or pointers to the objects stored in object
store module 720). The search definition could further refine
previous search criteria and enable quick processing without
consuming unnecessary resources. For example, if a classi-
fication view includes a category of objects associated with
HIPAA, then a user may select that category of objects and

US 9,430,564 B2

35

define search criteria for “[Enterprise Name] Confidential”
in order to find all HIPAA documents identified during the
previous classification task that are explicitly labeled as
confidential for the enterprise.

If a search definition is created, as determined at 902, then
the search can be performed at 950 over object store module
720 and pointers from object store module 720 can be used
to quickly retrieve the actual objects identified during the
search from the appropriate content repository.

Sets of metadata and category information (e.g., key-
words or suitable data identifying the keywords) associated
with objects identified during a search of object store
module 720 can be stored in object search database 716 and
then loaded into central database 230. The data loaded in
central database 230 can then be processed in a similar
manner at 904-907 as described with reference to a classi-
fication task. Thus, data retrieved from a search of object
store module 720 can be presented to a user in a classifica-
tion view and may be manipulated by the user to see
different views of the data. Accordingly, additional classi-
fication tasks or searches, a remediation task, and/or a
registration task could be derived from a classification view
generated from a search query.

If a search definition is created at 901 for a capture
database of a capture system, however, then the search
definition could be defined to search captured objects (from
network traffic) that were indexed and stored in object store
module 320 of capture system 30, for example. The search
definition could refine search criteria, including keyword
and/or metadata indexes. The search can be performed at
950 over object store module 320 and objects matching the
search criteria can be retrieved from object store module
320.

Metadata and category information (e.g., keywords or
suitable data identifying the keywords) associated with
objects identified during the search of object store module
320 can be stored in object search database 316 of capture
system 30 and then loaded into central database 230. The
data loaded in central database 230 can then be processed in
a similar manner at 904-907 as described with reference to
a classification task. Thus, data related to captured objects
retrieved from a search of object store module 320 can be
presented to a user in a classification view and may be
manipulated by the user to see different classification views
of the data. Accordingly, additional searches could also be
performed on subsets of the classified objects from the
search query. Generally, appropriate remediation and/or
registration techniques can be performed at the time an
object is captured from network traffic.

With reference again to 901, a remediation task can be
created from an inventory or classification view. To create a
remediation task from an inventory or classification view, a
user can select a remediation option for a subset (or multiple
subsets) of the inventoried or classified objects, where each
object in the subset is associated with a desired combination
of metadata elements and possibly one or more categories,
and where each object in the subset is associated with the
same metadata element for at least one of the types of
metadata. The metadata elements may be presented in a
desired hierarchical arrangement of dimensions. From an
inventory or classification view, a user can manipulate the
view by drilling down dimension groups and/or slicing and
dicing dimensions and/or specific metadata elements until a
view is presented with a combination of metadata elements
representing a desired subset (or multiple combinations
representing multiple subsets) of the objects. In one
example, the user can then create a remediation task for the

10

15

20

25

30

35

40

45

50

55

60

65

36

subset (or multiple subsets) presented in the manipulated
view by selecting a remediation option (e.g., by activating a
remediation clickable).

The selection to remediate can then produce another
display screen in which parameters for the remediation task
are automatically populated from the selected subset (or
subsets) of the previous screen. Parameters can include
metadata elements specifying a location of the objects to be
remediated (e.g., content repositories, shares, devices) and
other metadata elements associated with the selected subset.
The combination of metadata elements may also be inde-
pendently selected or refined by a user. In addition, if the
remediation task is derived from a classification view (re-
sulting from a previous classification task or a search query)
then the category information associated with the selected
subsets can populate the parameters for the remediation task.
Additionally, in example embodiments the user could adjust
the conditions and values of the metadata elements associ-
ated with the targeted objects.

Parameters for a remediation task can also include one or
more remediation policies specifying particular remediation
actions to be performed. Remediation policies can be
selected and/or defined by a user. Remediation actions could
include encrypting, deleting, quarantining, moving, modi-
fying, reporting, or any other suitable action.

Policies can be created to define remediation actions for
particular types of documents. In one example scenario, a
state privacy law policy could be created to define how to
remediate documents covered by state privacy laws. In this
example, a user could drill down one or more dimension
groups in a classification view to identify a particular subset
of the classified objects subject to State privacy laws. The
user could select a remediation option for the subset, and
metadata elements and category information associated with
objects of the subset could automatically populate remedia-
tion task parameters in the next display screen. The user
could then select a “State Privacy Laws’ policy to be applied
to the subset.

When a remediation task is created at 901 and there is no
search definition as determined at 902, then at 903 the
remediation task flow is directed to 930 where a remediation
task request and associated parameters, including a reme-
diation action or policy, are communicated to discover
system 70 via control path 26a. When discover system 70
receives the remediation task parameters, the selected one or
more content repositories indicated by the parameters can be
crawled at 931 to identify and possibly fetch objects asso-
ciated with the other parameters (e.g., share, file type, owner,
file size, categories). The identified objects may be fetched
depending upon the type of remediation actions requested.
For example, a remediation task to delete certain files could
simply crawl the repository, identify the objects, and delete
them. On the other hand, a remediation task to encrypt files
using encryption services on a particular server could crawl
the repository, identify the objects, fetch the objects, provide
them to the encryption services, and store the encrypted
objects back in the repository.

When an object is fetched during a registration task, the
object can be classified by content type at 932, its content
signatures can be analyzed at 933, and the object can be
indexed and appropriately stored via index module 730 and
object store module 720. These activities can be accom-
plished as previously described herein with reference to
object classification 922, content signature analysis 923,
index module 730, and object store module 720.

An identified or fetched object can be remediated at 935
according to the remediation policy or remediation action

US 9,430,564 B2

37

provided in the remediation task parameters. Additionally,
remediation incidents list 762 can be updated to reflect the
remediation action taken, the objects affected by the reme-
diation action, and any other relevant information related to
the remediation task. In example embodiments a system
dashboard may be displayed to the user on user system 22,
for example, providing information associated with reme-
diation incidents list 762.

With reference again to 901, a user may create a regis-
tration task from an inventory or classification view. Cre-
ation of a registration task can be accomplished as described
with reference to creating a remediation task at 901. A user
can manipulate (e.g., by drilling down, slicing, and/or dic-
ing) an inventory or classification view to display a desired
subset (or multiple subsets) of the inventoried or classified
objects. A registration task can be created for the desired
subset (or subsets) by selecting a registration option (e.g., by
activating a registration clickable). Additionally, parameters
for the registration task can be automatically populated from
the selected subset, as described with reference to creating
a remediation task. Also, the user could adjust the conditions
and values of the metadata elements associated with the
targeted group of objects.

When a registration task is created at 901 and there is no
search definition as determined at 902, then at 903 the
registration task flow is directed to 940 where a registration
task request and associated parameters are communicated to
discover system 70 via control path 26a. When discover
system 70 receives the registration task parameters, the
selected one or more content repositories indicated by the
parameters can be crawled at 941 to identify and possibly
fetch objects associated with the other parameters (e.g.,
share, file type, owner, file size, categories). The identified
objects may be fetched depending upon the type of regis-
tration actions requested.

When an object is fetched during a registration task, the
object can be classified by content type at 942, its content
signatures can be analyzed at 943, and the object can be
indexed and appropriately stored via index module 730 and
object store module 720. These activities can be accom-
plished as previously described herein with reference to
object classification 922, content signature analysis 923,
index module 730, and object store module 720.

An identified or fetched object can be registered 945. In
one example embodiment for registering objects, registra-
tion list 774 and index table 776 may be created and stored
in one or more suitable memory elements, such as registra-
tion database 772. A system dashboard may also be dis-
played to the user on user system 22, for example, providing
information pertaining to the registration of the selected
objects.

Turning to FIG. 10, FIG. 10 illustrates an embodiment of
the data protection workflows system using central database
230 of data manager 20 to generate an online analytical
processing (OLAP) cube 1000 (as indicated at 904 of FIG.
9). In this example, a representative group of one hundred
sixty-four sets of metadata elements, corresponding to one
hundred sixty-four identified objects, are used to generate
OLAP cube 1000, which can quickly provide answers to
analytical queries that are multidimensional in nature. As
illustrated in FIG. 10, an OLAP cube may be created from
attributes of objects, such as metadata elements, identified
on content repositories 40 during a classification, remedia-
tion or registration task, or objects identified on an object
store module 720 or 320 of discover system 70 or capture
system 30, respectively, during a search query. The use of
OLAP (as indicated in data protection workflows 900 of

25

30

35

40

45

38

FIG. 9 at 904 and 905) to generate inventory and/or classi-
fication views, allows a user to quickly see the type and
quantification of information stored in a network’s content
repositories (e.g., servers), which may have otherwise been
buried in an extraordinarily large number (e.g., billions) of
records. From these summaries, protection tasks such as
remediation and/or registration may be performed to protect
selected data stored in the objects of the content repositories.

FIG. 10 illustrates three dimensions (i.e., owner, object
type, and share) of objects that have been identified by a
discover system. In this example, an inventory task has been
performed on three shares of a content repository and
metadata elements have been retrieved for objects found on
the targeted shares. OLAP cube 1000 has been created from
the retrieved information. For example, the inventory task
found that Mary/Level 1 is the owner of eight pdf documents
and that two of those pdf documents are on Marketing_3
share of the targeted server. This information is readily
visible using an OLAP cube. If traditional techniques were
used a user may have to manually search through three
different query results (the separate results for owner, file
type, and share) or create a script or other filter to try to
narrow down the results into the desired data. Obviously, as
the number of elements per axis increases, the job of
determining a specific combination becomes more daunting.
Moreover, a user would also have to have some inclination
as to how to narrow the search results in order to filter them.
Of course, the OLAP “cube” may have more than three axes,
corresponding to additional types of metadata and/or cat-
egory information.

FIG. 11 graphically illustrates an embodiment of a
method for generating an OLAP cube and analytic views
(i.e., inventory and/or classification) of the data in the OLAP
cube. At step 1101, information from central database 230 is
transformed into “buckets.” A bucket consists of a group of
related information (e.g., corresponding to types of metadata
associated with objects identified by discover system 70
during an inventory or classification task, or during a search
query). For example, one bucket shown in FIG. 11 is object
type. A bucket may be further granulated into sub-buckets.
For example, the object type bucket could be granulated into
pdf, doc, x1s, and html buckets. Typically, the buckets are the
basis for the axes of an OLAP cube. Note that any type of
OLAP data structure (not just a cube) may be used in
conjunction with the discussed concept.

At step 1103, the transformed data is assembled into one
or more OLAP cubes. Data workflows include the non-
trivial extraction of previously unknown and potentially
useful information from data in a network. The extraction
can be accomplished with inventory and classification tasks
or with a search query. The results of inventory and classi-
fication tasks and search queries, can provide visibility into
data stored in a targeted location of a network (e.g., one or
more content repositories or one or more shares of a content
repository).

Analytic techniques can be applied at 1105 to an OLAP
cube such that information extracted from the targeted
location can be summarized by various combinations of
dimension groups, specific metadata elements, and possibly
categories. The summaries can be presented to a user at 1107
as an inventory view resulting from an inventory task and
based on inventory dimensions such as metadata types, or as
a classification view resulting from a classification task or
search query and based on classification dimensions such as
categories and metadata types.

The analytic view (inventory or classification) presented
to a user can be evaluated and manipulated at 1109. At this

US 9,430,564 B2

39

point, the user can drill down into a dimension (e.g., by
clicking on a desired dimension group) or can slice and/or
dice selected dimensions and/or specific metadata elements.
The process then repeats beginning at 1105 to apply analytic
techniques to create a new analytic view based on the user’s
manipulations.

In one example illustration, assume the dimensions from
OLAP cube 1000 are presented to a user in the following
hierarchical order: share, object type, and owner. In an initial
inventory view of OLAP cube 1000, total counts and total
combined file sizes may be presented for all shares, all
object types, and all owners. A user could drill down into a
dimension group of object types to view summaries for each
specific object type (i.e., .pdf, .doc, xIs, and .html). Total
counts and file sizes for each specific object type associated
with any of the shares and any of the owners can be
presented to the user at 1107. At 1109 the new analytic view
can be further evaluated and manipulated. For example,
upon seeing that there are 53 total pdf files in the targeted
shares, the user could drill down into the owner dimension
to find out the distribution of the 53 pdf files across the
owners. Total counts and file sizes for pdf files associated
with each owner can be presented to the user at 1107.

It should be noted that the process of evaluating and
manipulating an analytic view, applying analytics, and pre-
senting a new analytic view to a user can be repeated any
number of times. In addition, one or more of these opera-
tions may be performed in parallel or in a different order
than that illustrated. Note also that from an initial starting
point of simple data (e.g., in a database/repository), the
system has achieved a new level of knowledge based on this
data. This valuable progress is depicted in FIG. 11.

Turning to FIG. 12, FIG. 12 illustrates a simplified
example querying flow using metadata and keyword index-
ing, that may be performed by a search in a data protection
workflow (e.g., as indicated at 950 of data protection work-
flows flow chart 900 of FIG. 9). Searches can be performed
on object store modules 320 and 720 of capture and discover
systems 30 and 70, respectively. As previously described
herein, generally, actual contents of captured objects may be
stored in object store module 320 of capture system 30,
while pointers to objects (e.g., indicating a location in a
server) may be stored in object store module 720 of discover
system 70. However, it is possible for either system to be
configured using pointers or actual object storage.

At step 1201, one or more keyword indexes can be
queried for one or more keywords. For example, in the query
described with reference to the entries of FIG. 6, keyword
indexes 334 are queried for both “confidential” and “infor-
mation.” The result of this query is that “confidential” and
“information” is only collectively found in reference 1.
Essentially, the result of the query is the intersection of a
query for “confidential” and a query for “information.” Of
course any Boolean operator such as OR, NOT, etc. may be
used instead of or in conjunction with the Boolean operator
AND. In addition, natural language based queries may be
supported. Metadata indexes 336 are similarly queried at
step 1203. For example, in the email query described above
for the entries of FIG. 6, metadata indexes 336 are queried
for “HCI,” “mailfrom Leopold,” and “PDF.” The result of
this query is that this set of metadata is only collectively
found in reference 1.

Because this search was not bound by a time frame, all
available keyword and metadata indexes would be queried
for these keywords. However, the number of keyword
indexes queried is reduced for a time frame limited search.
At step 1205, the results of the previous queries are inter-

10

15

20

25

30

35

40

45

50

55

60

65

40

sected to create a set of references that satisfy the overall
query. In the example above, the result of this intersection
would be reference 1. Accordingly, only reference 1 would
satisfy the collective query, as it is the only reference to have
all of the required criteria. At step 1207, the file information
associated with the references from the intersection of step
1205 may be retrieved. As described earlier, for some data
(e.g., data in motion) this information may be stored as a tag
in a tag database in an object store module and can be
retrieved from there. The actual documents associated with
the references may also be retrieved from object store
module 320. For other data (e.g., data at rest), however,
actual documents may be retrieved by locating the object in
a content repository (e.g., a file server) using a correspond-
ing pointer from object store module 720.

While this simplified query flow queries a keyword index
prior to a metadata index query the reverse order may be
performed. Additionally, many other variations on the sim-
plified flow are possible. For example, while not as efficient,
a query flow that performs an intersection after each index
query (or after two, three, etc. queries) may be utilized.
Another example is performing a query for a first specific
time period (querying a first particular set of one keyword
and one metadata index that were created/updated during the
same time period), intersecting the results of the first query,
performing a query on a second specific time period (que-
rying a second particular set of one keyword and one
metadata index that were created/updated during the same
time period), intersecting the results of first query with the
results of the second query, etc. Yet another example is
performing a query for a first specific time period (querying
a first particular set of one keyword and one metadata index
that were created/updated during the same time period),
intersecting the results of the first query, performing a query
on a second specific time period (querying a second par-
ticular set of one keyword and one metadata index that were
created/updated during the same time period), intersecting
the results of the second query, etc. and when all (or some
pre-determined number of) queries have been performed and
intersections calculated for each specific time period, inter-
secting all of the specific period intersection results.

An optimization for the above-described system uses
adaptive cache alignment. Adaptive cache alignment means
that the indexer (or some other entity including a user) aligns
memory and/or disk data structures of the indexes (or index
entries) to be the size of the system’s processor’s cache lines
(for example, Level 2 (I.2) memory cache within the sys-
tem’s processor—this processor has not been illustrated in
this application in order to not unnecessarily clutter the
FIGURES). If the processor’s capabilities are unknown,
upon initialization, the capture or discover device’s proces-
sor is examined and a determination of the appropriate cache
alignment is made based upon that examination. Of course,
the cache alignment may also be pre-determined if the exact
system specifications are known. In another embodiment,
the indexer (or other entity) examines the block size of the
file system (of the fundamental storage data structure) and
uses this size as part of the cache alignment. Additionally,
memory (such as RAM, cache, etc.) used by the indexer may
be pre-allocated to remove the overhead of allocating
memory during operation. Furthermore, algorithms operat-
ing on the memory are tolerant of uninitialized values being
present upon first use. This allows for the usage of the
memory without the latency associated with clearing or
resetting the memory to a known state or value.

US 9,430,564 B2

41

Registration System

Turning to FIGS. 13-18, an example embodiment of
registration system 770 is illustrated. In accordance with an
example implementation, registration system 770 can be
implemented as part of a data combination protection system
that also includes one or more detection systems (not shown)
that can be implemented in the same or other network
devices (e.g., capture systems or other suitably configured
network devices). Registration system 770 can create a
registration list of specified combinations or sets of data
elements to be monitored. The registration system can
recognize and register data elements presented in various
character formats or patterns and provided in various elec-
tronic file formats having a predefined delimiter between
each set of data elements. Multiple detection systems can
also be provided to evaluate captured and/or stored objects
in the network environment to determine which objects
contain one or more of the registered sets of data elements.
The detection systems may be configured to recognize data
elements within an object and to determine whether each
data element of a registered combination of data elements is
contained somewhere within the confines of the object. The
registration list may be indexed and searched by the detec-
tion system in a manner that optimizes computer resources
and that minimizes network performance issues.

With reference to FIG. 13, registration system 770 can
include a registration list module 1310 and an index table
module 1320. Input to registration list module 1310 can
include a delimited data file 771 and a regular expressions
table 773 and output of registration list module 1310 can
include a registration list 774. In one embodiment, delimited
data file 771 may represent a plurality of delimited data files
generated for various databases and/or files in a network and
provided as input to registration list module 1310. These
delimited data files include specified combinations or sets of
data elements to be registered by registration system 770.

Registration list module 1310 may perform the functions
of extraction 1312, tokenization 1314, and tuple storage
1316. In one embodiment, delimited data file 771 includes a
plurality of records delimited by a predefined delimiter such
as, for example, a carriage return. Each record may include
one or more data elements, which are extracted by extraction
function 1312. The set of data elements within a record can
be a specified combination of related data elements (e.g., a
name, a phone number, a social security number, an account
number, etc.) that requires safeguarding. Each of the data
elements of a record are tokenized by tokenization function
1314 into a token (e.g., a numerical representation), which
can then be stored in a tuple or record of registration list 774
by tuple storage function 1316. Thus, a tuple in registration
list 774 may include numerical representations or tokens of
each data element in one particular combination of related
data elements that is sought to be protected.

The data elements extracted and tokenized from delimited
data file 771 can include words and/or expression elements,
which can have multiple possible formats (e.g., phone
number, date of birth, account number, etc.). A data element
can be compared to regular expressions table 773 to deter-
mine whether the particular character pattern of the data
element matches a predefined expression pattern (i.e., a
regular expression), It will be apparent that regular expres-
sions table 773 used by data combination protection system
10 may be configured in numerous other ways, as long as the
table 773 includes the predefined expression patterns.

In one embodiment, regular expressions table 773
includes numerous expression patterns, including a plurality
of expression patterns for the same concept. For example, a

25

40

45

50

42

telephone number concept could include the following regu-
lar expression patterns: ‘(nnn) nnn-nnnn’, ‘nnn-nnn-nnnn’,
and ‘nnn.nnn.nnnn’ with ‘n’ representing numbers 0-9. Simi-
larly, different states use different sequences of characters
and separators for driver’s license numbers. Thus, a driver’s
license concept could include a regular expression pattern
for each unique sequence of characters and separators rep-
resenting possible numbers of a driver’s license in different
states. For example, ‘dnnn-nnnn-nnnn-nn’, and ‘dnnn-nnnn-
nnnn’ could be expression patterns for license numbers in
Wisconsin and Illinois, with ‘n’ representing numbers 0-9
and ‘d’ representing letters A-Z.

Expression patterns in regular expression table 773 may
be user-configurable through an interface that allows a user
to define expression patterns for a particular concept. In
addition, some expression patterns may be automatically
generated or may be preconfigured. For example, a list of
common or popular regular expression patterns can be
preconfigured in regular expressions table 773 that may be
tailored specifically to the industry into which a data com-
bination protection system (e.g., registration system 770 and
a complementary detection system) is implemented.

Index table module 1320 may perform the functions of
token count operation 1322, token key selection 1324, and
index storage 1326 to create index table 776. Token count
operation function 1322 processes registration list 774 to
count all of the occurrences of each token in registration list
774. A temporary prime count table 775 may be created to
store the count sums. Token key selection function 1324 can
then process each tuple and, using prime count table 775,
select the least frequently occurring one of the tokens from
each tuple as a token key. Each unique token key may then
be stored in an index of index table 776. Thus, index table
776 can contain a plurality of indexes, each having a unique
token key and each being associated with one or more tuples
of registration list 774.

FIG. 14 provides a more detailed illustration of exemplary
file structures of delimited data file 771 with an example
record 1, registration list 774 with an example tuple 784, and
index table 776 with an example index 782. Delimited data
file 771 is shown with a detailed first record 780 illustrating
a possible configuration of record 1 with an example com-
bination of data elements types (i.e., words and expression
elements). First record 780 corresponds to tuple 784 of
registration list 774, where each word and expression ele-
ment from first record 780 corresponds to one token in tuple
784. Tuple 784 is indexed in registration list 774 by index
782 of index table 776, which includes a registration list
offset that is a pointer (i.e., offset 4) to the beginning (i.e.,
token 1) of tuple 784.

In one example embodiment, delimited data file 771 may
be configured as a file with a plurality of records (e.g., record
1, record 2, record 3, etc.) having a predefined delimiter
between each record. A delimiter can be any formatting
character or other character used to designate the end of one
record and the beginning of a next record. Some common
delimiters include carriage returns, line feeds, semi-colons,
and periods. However, any character could be designated as
a delimiter if the data file is appropriately configured with
the particular delimiter. In one example embodiment, if a
carriage return is defined as the delimiter for delimited data
file 771, then each record would end with a carriage return.

As shown in expanded first record 780, each record may
be comprised of a plurality of data elements (i.e., words or
expression elements). The data elements within each record
of delimited data file 771 are separated by at least one
separator (e.g., comma, space, dash, etc.). A word may be

US 9,430,564 B2

43

comprised of a string of characters having one or more
consecutive essential characters without any separators. An
expression element may be comprised of a string of char-
acters having at least two words and one or more separators
between the words. In one embodiment, essential characters
can include a fundamental data structure in a written lan-
guage including numerical digits, letters of a written lan-
guage, and/or symbols representing speech segments of a
written language (e.g., syllabograms, etc.). Speech segments
of a language can include words, syllables of words, distinct
sounds, phrases, and the like.

Separators can include any character that is not an essen-
tial character and that is not recognized as a predefined
delimiter indicating an end of a record in the data file.
Examples of separators include punctuation marks, word
dividers and other symbols indicating the structure and
organization of a written language (e.g., dashes, forward
slashes, backward slashes, left parentheticals, right paren-
theticals, left brackets, right brackets, periods, spaces, an at
symbol, an ampersand symbol, a star symbol, a pound
symbol, a dollar sign symbol, a percent sign symbol, a quote,
a carriage return, a line feed, etc.). In some data file
configurations, separators can include characters that are
equivalent to the predefined delimiter for the data file.
However, in such data files, the equivalent character within
a record must be differentiated from the predefined delimiter
that indicates an end of the record. Thus, the equivalent
character within the record would be processed either as a
separator between data elements or as a separator included
within an expression element.

In an example embodiment, delimited data file 771 is a
comma separated variable (CSV) list, which can be a text
format generated for a database or other file having a tabular
data format. A CSV list can include multiple data elements
in each record with the data elements being separated by
commas. Each record in the CSV list includes a character
designated as a predefined delimiter to indicate an end of the
record, such as a carriage return or line feed. These pre-
defined delimiters conform to Request for Comments (RFC)
4180, in which carriage returns and line feeds within a
record are encapsulated in quotes or appropriately escaped
in order to differentiate them from a predefined delimiter
indicating an end of record. Additionally, in CSV lists,
quotes may also be used as separators between data elements
or within an expression element if appropriately escaped
(i.e., an empty set of quotes to indicate a literal quote).

Generally, for a database or other file having a tabular data
format, each CSV record includes the same number of data
elements. Embodiments of registration system 770, how-
ever, can accommodate varying numbers of data elements in
each record, because each record is delineated by a pre-
defined delimiter that is recognized by system 770. More-
over, registration system 770 can also accommodate other
formats of delimited data file 771 as long as each record
(containing a desired combination of data elements) is
delineated by a predefined delimiter, which is designated for
the data file 771 and recognized by registration system 770.
For example, a free form textual document, in which a
variety of separators (e.g., spaces, dashes, etc.) separate data
elements, may be provided as a delimited data file if a
predefined delimiter (e.g., line feed, carriage return, period,
etc.) is used to separate successive pairs of records and is
designated as the delimiter for the data file such that it is
recognized by registration system 770. In example embodi-
ments of the data protection workflows system, if objects
fetched from content repositories 40 during a registration
task are not configured as delimited data files, then the

10

15

20

25

30

35

40

45

55

60

65

44

objects could be converted to a CSV format or any other
suitable delimited data file format.

In the example first record 780 of FIG. 14, ten data
elements are shown, including two words, two expression
elements, and six words in succession. A separator is pro-
vided between each of the successive data elements and a
delimiter is provided at the end of first record 780. After a
data element has been identified and extracted from first
record 780 by registration list module 1310 of registration
system 770, the data element may be tokenized into one
token (e.g., token 1 through token 10) and stored in tuple
784 of registration list 774. An end tag may also be provided
to denote the end of a tuple in registration list 774. Regis-
tration list module 1310 can process each record of delim-
ited data file 771 and create a separate tuple in registration
list 774 corresponding to each record.

Once registration list 774 is complete with tuples corre-
sponding to each record of delimited data file 771, index
table module 1320 may process registration list 774 to create
index table 776. In the example shown in FIG. 14, index
table module 1320 generates index 782 to provide an index
for locating tuple 784 in registration list 774. Prime count
table 775, which stores the sums of occurrences for each
token in registration list 774, can be generated. A token key
for tuple 784 can then be computed by searching prime
count table 775 to find a token from tuple 784 that appears
with the least frequency in the entire registration list 774,
relative to the other tokens in tuple 784. In this example
illustration, token 2 is shown as the token occurring with the
least frequency (i.e., the lowest sum of occurrences), com-
pared to the sums of occurrences of token 1 and tokens 3-10.
Thus, token 2 may be selected as the token key and used to
create index 782.

In one embodiment, index table 776 can be generated
using a known technique of forcing hash numbers (e.g.,
token keys) into a narrow boundary with modulus, in which
the boundary is defined by a prime number. This can be
advantageous for particularly large amounts of data, where
a smaller area of memory may be allocated to accommodate
the data and the data is generally distributed uniformly
within the allocated memory. Thus, extremely large amounts
of data can be more efficiently processed. The size of index
table 776 could be generated by, for example, an adminis-
trative system (e.g., data manager 20), based on resources
selected by an authorized user during resource provisioning
of the data combination protection system. Once the
memory is allocated, each index can be placed in a space
within index table 776 corresponding to a value (e.g., a
remainder) calculated by performing a modulo operation on
the token key with the prime number size of the index table.
If statistical collisions occur (i.e., different token keys have
the same result from a modulo operation), then the different
token keys can be link-listed in the same space of index table
776.

A registration list offset, which points to a beginning of
tuple 784 (e.g., offset 4 pointing to token 1) may be added
to index 782 and associated with the token key. In addition,
a document identifier (“document ID” or “docID”), which
can identify delimited data file 771 may also be added to
index 782 and associated with the token key. Thus, when
multiple delimited data files are used to create registration
list 774, the document ID field in an index identifies which
delimited data file is associated with the tuple to which the
accompanying registration list offset points. In addition, if
two or more token keys are link-listed in a space within
index table 776, then the offsets and document IDs corre-

US 9,430,564 B2

45

sponding to a particular token key are associated with that
particular token key in the index.

The <NEXT> field of index 782 represents additional
registration list offsets and document IDs that may be
associated with the same token key in index 782. For
example, a second tuple having a second offset in registra-
tion list 774 may also contain token 2. If token 2 is the token
in the second tuple that occurs with the least frequency in the
registration list 774 relative to the other tokens in the second
tuple, then token 2 of the second tuple could be selected as
the token key for the second tuple. Thus, the same index 782
could be used to designate the second tuple by adding a
second registration list offset and an appropriate document
1D after the <NEXT> pointer.

Turning to FIG. 15, FIG. 15 is a simplified block diagram
illustrating example data input and a resulting prime count
table 1540, which may be generated by token count opera-
tion 1322 of index table module 1320. Data element 1501
(word 1), data element 1502 (word 1), data element 1503
(expression element 1), and data element 1504 (expression
element 2) represent example data elements of a delimited
data file, such as delimited data file 771, which are stored as
tokens in one or more tuples of a registration list such as
registration list 774. Token count operation function 1322
may count the tokens generated for each of the data elements
1501, 1502, 1503, and 1504 and may produce prime count
table 1540. In one embodiment, prime count table 1540 may
include ‘n’ entries 1542 with corresponding token sums
1544. In this example, ‘n’ is equal to a prime number and a
modulo operation is performed on each token to determine
which entry corresponds to the token sum to be incremented.
Thus, in this example, entry 2 corresponds to tokens repre-
senting data element 1501 (word 1) and data element 1502
(word 1) and, therefore, has a token sum of 2. In addition,
entries 4 and 7 correspond to tokens representing data
element 1503 (expression element 1) and data element 1504
(expression element 2), respectively, and each has a token
sum of 1.

Turning to FIGS. 16A, 16B, and 17, simplified flowcharts
illustrate operational processing of registration system 770.
FIGS. 16A and 16B are simplified flowcharts illustrating
example operational steps for registration list module 1310
of registration system 770. FIG. 17 is a simplified flowchart
illustrating example operational steps for index table module
1320 of registration system 770.

FIG. 16A shows the overall flow 1600 of registration list
module 1310, including the processing of one or more
delimited data files, the processing of each record of each
delimited data file, and the processing of each data element
in each record of the one or more delimited data files. Flow
may begin in step 1602 of FIG. 16A, where a first delimited
data file is obtained. In one embodiment, registration system
770 can be configured to crawl one or more content reposi-
tories (e.g., databases on file servers) or other storage media
containing data files. As previously discussed herein, in one
example, a database or other data file could be converted to
a comma separated variable list (CSV), which could be
provided as the delimited data file. Thus, when a registration
task is initiated on discover system 70, for example, param-
eters associated with the registration task could be used to
crawl specified content repositories and to identify files (i.e.,
objects) to fetch and register based on the registration task
parameters. Identified files may be converted into delimited
data files if needed.

Once the delimited data file is obtained, a first record is
fetched in step 1604. In step 1606 a start of a first data
element is identified in the fetched record. In step 1608,

5

10

15

20

25

30

35

40

45

50

55

60

65

46

applicable extraction, tokenization, and storage operations
are performed on the current data element, which will be
described in more detail herein with reference to FIG. 16B.
After applicable extraction, tokenization, and storage opera-
tions have been performed for the current data element, flow
moves to decision box 1610 to determine whether more data
elements exist in the record. If more data elements exist in
the record, then a start of a next data element in the record
is identified in step 1612. Flow then loops back to step 1608
to perform extraction, tokenization, and storage on the new
data element.

With reference again to decision box 1610, if a predefined
delimiter is recognized in the record after the current data
element, then it is determined that no more data elements
exist in the record. Flow may then move to decision box
1614 to determine whether there are more records in delim-
ited data file. If more records exist in the delimited data file,
then a next record is fetched in step 1616 and flow loops
back to step 1606 to identify a start of a first data element in
the new record.

If it is determined that no more records exist in delimited
data file in decision box 1614, however, then flow passes to
decision box 1618 to determine whether there are more
delimited data files to be processed. If it is determined that
one or more delimited data files exist that have not been
processed, then a next delimited data file is obtained in step
1620, flow loops back to step 1604, and a first record is
fetched from the new delimited data file. However, if it is
determined in decision box 1618 that all delimited data files
have been processed, then the flow ends.

FIG. 16B shows the overall flow of step 1608 in FIG.
16A, illustrating example operational steps to extract, token-
ize, and store a data element from a record of a delimited
data file. Flow may begin in step 1652 where regular
expressions table 773 is searched to find a longest match to
a character pattern of a string of characters beginning at the
start of the data element. In one embodiment, expression
patterns from regular expressions table 773 are compared in
order of size from longest to shortest to determine if there is
a match. In decision box 1654 a query is made as to whether
a match from regular expressions table 773 was found.

If it is determined that none of the regular expression
patterns match a character pattern of any string of characters
beginning at the start of the data element (i.e., the data
element does not match any regular expression patterns in
regular expressions table 773), then the data element repre-
sents a word and flow moves to step 1660 to find an end of
the data element (i.e., the word). The end of word is the last
consecutive essential character beginning at the start of the
data element. After the word is extracted in step 1662, flow
passes to decision box 1664, where the word may be
evaluated to determine whether it is a ‘stop word’. ‘Stop
words’ can include any words determined by an adminis-
trator or otherwise specified as a stop word, such as simple
grammar construction words (e.g., like, and, but, or, is, the,
an, a, as, etc.). If the word is determined to be a stop word,
then it is ignored and the flow ends without tokenizing or
storing the word. However, if the word is determined not to
be a stop word, then flow moves to step 1668 where the word
may be stemmed. A stemming process such as, for example,
a known porter stemming algorithm, may be applied to the
word in which any suffixes and/or affixes can be extracted
off of a stem of the word.

After stemming has been performed if necessary, flow
may pass to step 1670 where the word (or stemmed word)
is tokenized. In one embodiment, tokenization includes
converting the word (or stemmed word) into a 32-bit

US 9,430,564 B2

47

numerical representation or token. In step 1672, the token is
stored in a tuple of registration list 774, where the tuple
corresponds to the record from which the data element was
extracted. After the token has been stored, flow ends and
processing continues at step 1610 of FIG. 16A.

In one embodiment, the numerical representation for the
token is generated using a Federal Information Processing
Standards (FIPS) approved hash function. Typically, if the
hash function has a lesser degree of numerical intensity, and
is, therefore, a less secure hash, then less computer resources
are used to calculate the hash. However, because registration
list 774 may be stored in multiple places throughout a
network and potentially searched repeatedly by a plurality of
detection systems, a greater numerical intensity may be
desirable for the hash function. Thus, it may be desirable to
generate more secure tokens for words and expression
elements containing personal and otherwise sensitive infor-
mation, even if generating such tokens requires more com-
puter resources.

Another consideration is the size of the numerical repre-
sentation used for the tokens. A 32-bit numerical value alone
may not be statistically viable. That is, one word or expres-
sion element alone could generate many false positive
results if one of the detection systems searches a target
document or file for only one 32-bit token representing the
data element. The probability of a false positive can be
reduced, however, when a record includes two or more data
elements that must be found in a document to validate a
match. The probability of a false positive can be reduced by
232 for each additional token that is included in a tuple and
that must be found in a document to validate a match. For
example, the probability of a false positive for a pair of
words is 2%* and for three words is 2°°. Accordingly, in one
embodiment, each tuple includes at least two tokens.

Referring again to decision box 1654, if it is determined
that a match was found between an expression pattern of
regular expression table 773 and the character pattern of a
string of characters beginning at the start of the data element,
then the data element represents an expression element and
has the same length as the matching expression pattern. The
expression element can be extracted at step 1656 and
normalized in step 1658. In one embodiment, normalizing
the expression element may include eliminating any sepa-
rators from the expression element. For example, a phone
number could be normalized to ‘nnnnnnnnnn’ with ‘n’
representing any number 0 through 9. In other embodiments,
normalization may include modifying separators and/or par-
ticular essential characters of the expression element to
achieve a predefined standard form for the expression ele-
ment. For example, all dates could be standardized to the
form “YYYY-MM-DD’ with ‘“YYYY’ representing the year,
‘MM’ representing the month, and ‘DD’ representing the
day.

Once the expression element has been extracted and
normalized, flow may move to step 1670 where the expres-
sion element is tokenized and, in step 1672, the resulting
token is stored in a tuple of registration list 774. After the
token has been stored in registration list 774, flow returns to
step 1610 of FIG. 16A.

Turning to FIG. 17, FIG. 17 shows the overall flow 1700
of'index table module 1320, which generates index table 776
with token keys and associated offsets to the corresponding
tuples stored in registration list 774. To reduce the overhead
of processing by detection systems (not shown), each of the
tuples can be indexed by a token key. In one embodiment,
a token key can be a token that, compared to other tokens in
the same tuple, has the lowest frequency occurrence in all

25

40

45

48

tuples of the entire registration list 774. Thus, if multiple
delimited data files are used to create registration list 774, a
token key could be selected having the lowest frequency of
all tuples created from the multiple delimited data files.

In one example embodiment, a token key can be deter-
mined using a prime count table, such as prime count table
775 shown in FIG. 13, and further illustrated in an example
prime count table 1540 in FIG. 15. Beginning in step 1702
of flow 1700, prime count table 775 can be generated for the
tokens stored in registration list 774 using the known
technique, as previously described herein, of forcing hash
numbers (e.g., tokens) into a narrow boundary with modu-
lus, in which the boundary is defined by a prime number.
Using a prime count table can alleviate computer resources
needed to process data elements potentially numbering in
the billions. Theoretically, the 32-bit numerical representa-
tion (2*%) could represent greater than 4 billion possible
tokens. In a real-world example scenario, if an enterprise has
four different entries of sensitive data for 300 million
individuals, then the number of entries would exceed 1
billion. Computer resources may not be able to adequately
perform processing functions if each individual entry is
counted to produce index table 776. The use of prime count
table 775, however, allows a smaller area of memory to be
allocated and used to count the tokens in registration list 774
and select lowest frequency tokens as token keys.

In one embodiment, the size of a prime count table may
be generated by, for example, an administrative system (e.g.,
data manager 20), based on resources selected by an autho-
rized user during resource provisioning of the data combi-
nation protection system. In one example scenario, for an
enterprise having collected sensitive data for 300 million
people, if 100 million entries are determined to be adequate
to count tokens, then the size of the prime count table could
be defined by the next closest prime number (e.g., 100,000,
007). Thus, a table with 100,000,007 entries can be created
and each of the entries cleared with a zero value.

Once memory has been allocated and defined for a prime
count table, each token in registration list 774 can be
processed to determine which entry to increment in prime
count table 775. In one embodiment, registration list 774
may be sequentially processed from the first token in the first
tuple to the last token in the last tuple. For each token, a
modulo operation can be performed using the prime number
and the numerical value of the particular token. The remain-
der value of the modulo operation is located in prime count
table 775 and incremented by 1. Some statistical collisions
may occur in which tokens generated for two different data
elements result in the same remainder. In this case the same
entry in prime count table 775 can be incremented, thus
artificially increasing the number count of the entry, which
corresponds to more than one token. However, an artificial
increase of a word count does not significantly diminish the
viability of determining the token in each tuple having the
lowest frequency in the registration list.

After prime count table 775 is generated in step 1702,
flow passes to step 1704 where a first tuple is identified in
registration list 774. Steps 1706 through 1722 then perform
looping to determine a token key for each tuple and to
generate index table 776. Accordingly, the loop begins in
step 1706 where prime count table 775 is searched to
determine which one of the tokens in the current tuple has
the lowest count or frequency. In step 1708, the token of the
current tuple having the lowest frequency according to
prime count table 775 is selected as a token key for the
current tuple.

US 9,430,564 B2

49

After selecting the token key for the current tuple, flow
may pass to step 1710 where all indexes in index table 776
can be searched for a matching token key. With reference to
decision box 1712, if no index is found with a token key
matching the selected token key for the current tuple, then
flow passes to step 1716, where a new index is created in
index table 776 using the selected token key. Flow then
passes to step 1718 where a document identifier and offset
are added to the new index. In one embodiment, the docu-
ment ID may be obtained from header information of the
corresponding tuple in registration list 774. The offset may
be a pointer or index to the corresponding tuple in registra-
tion list 774. For example, the offset can be an index number
of the first token appearing in the corresponding tuple.

With reference again to decision box 1712, if an index is
found in index table 776 with a token key matching the
selected token key for the current tuple, then an index has
already been created for another tuple using the same token
key. In this scenario, flow may pass to step 1714 where the
current tuple information can be added to the existing index.
A pointer (e.g., <NEXT> pointer) can be added to the end of
the existing index and then a document ID and offset
corresponding to the current tuple can be added. Thus, any
number of tuples having the same token key can use the
same index.

After the index is created in step 1718 or updated in step
1714, flow passes to decision box 1720 to determine whether
the current tuple is the last tuple in registration list 774. If the
current tuple is not the last tuple, then the next tuple is
identified in step 1722 and flow passes back to step 1706 to
begin processing the next tuple to select a token key and
update index table 776. However, if it is determined in
decision box 1720 that the current tuple is the last tuple in
registration list 774, then all tuples have been processed and
flow 1700 ends.

Selecting a lowest frequency token as a token key for a
tuple helps improve processing efficiency during detection
processing activities. By using lowest frequency tokens as
token keys in the index table, tuples in the registration list
need not be compared to an object being evaluated unless the
object contains a data element that, when tokenized, is
equivalent to a token key in the index table. Thus, more
tuples may be excluded from unnecessary processing in this
embodiment than if a more commonly occurring token is
selected as a token key.

Alternative embodiments could be implemented to reduce
the processing required to generate the lowest frequency
token keys for an index table. Although such embodiments
could reduce the backend registration processing, additional
processing may be required by a detection system. In one
such alternative embodiment, a different token key selection
criteria (i.e., other than the lowest frequency selection cri-
teria) may be used. For example, tokens from tuples could
be selected as token keys based upon a predetermined
column or position of a data element in a record. Although
the index table may be more quickly generated as result,
more tuples may be evaluated during detection processing,
particularly if at least some of the token keys correspond to
more commonly occurring data elements. Nevertheless, this
embodiment may be desirable based on the particular needs
of an implementation. In addition, the token key selection
criteria may be user-configurable, such that an authorized
user can determine the selection criteria to be used by
registration system 770 when selecting the token keys.

FIG. 18 illustrates a scenario in which a record 1802 with
example data elements is processed by registration system
770. Record 1802 is an example single record of a delimited

20

25

30

35

40

45

50

50

data file, such as delimited data file 771, which may have a
plurality of records. Record 1802 includes data elements
separated by spaces and ending with a carriage return, which
is the predefined delimiter. Each of the data elements is
evaluated to determine if it is a word or an expression
element. The data elements represented as words (i.e., Carol,
Deninger, 123, Apple, Lane, Boise, Id., and 99999) are
extracted and tokenized. The data elements which are deter-
mined to match a regular expression pattern, are extracted
and normalized. In this example case, normalizing the
expression element includes removing any nonessential
characters. The normalized expression element is then
tokenized.

The following table represents the type of data, the
example data element contents of record 1802 correspond-
ing to each type of data, and the tokens generated for each
data element:

TABLE 1
Data Element/ Token (Numerical
Normalized Data Representation of Data
Type of Data Element Element)
First Name Carol 23
Last Name Deninger 55
Social Security 000-00-0000/ 99
Number 000000000
Date of Birth 1960-01-01/19600101 69
Street Address 1 123 19
Street Address 2 Apple 44
Street Address 3 Lane 32
City Boise 73
State D 29
Zip Code 99999 07
A tuple 1812 of registration list 1810 is created by

registering record 1802. Tokens 1804 generated from record
1802 may be stored in sequential order in tuple 1812 of
registration list 1810. In one embodiment tuple 1812
includes header information (not shown) including a docu-
ment identifier identifying the delimited data file or associ-
ated data storage (e.g., Customer records database in Sales)
associated with record 1802. Also, an end of each tuple in
registration list 1810 can be defined by a termination entry
such as a zero, as shown at the end of tuple 1812. In addition,
offsets 1814 are provided with registration list 1810, with
each offset pointing to a separate token entry in registration
list 1810.

Index table 1820 may be generated for registration list
1810, with index 1822 corresponding to tuple 1812. Index
1822 includes a token key (55), which is shown as the
second occurring token in tuple 1812. Token key (55) may
be selected if it is the token of tuple 1812 having the lowest
frequency occurrence in the entire registration list 1810, as
previously described herein. In addition, offset (1001) is
provided with token key (55) and points to the first occurring
token (23) in tuple 1812. Thus, offset (1001) indicates the
beginning of tuple 1812. Index 1822 may also include a
docID or document identifier indicating the delimited data
file or data storage associated with record 1802.

One or more detection systems may be implemented in
various network elements (e.g., capture system 30, discover
system 70, other suitably configured network devices) to
detect whether an object stored in a content repository or an
object captured from network traffic includes data elements
registered by registration system 770. A detection system
can include an evaluate module that processes an input
object (e.g., an object fetched or captured from a content

US 9,430,564 B2

51

repository, another network device, network traffic, etc.), to
extract and tokenize each data element of the input object in
substantially the same manner that registration system 770
extracted and tokenized data elements of delimited data file
771. Thus, extracted and tokenized data elements from the
input object can be compared to the extracted and tokenized
data elements from the delimited data file 771. If it is
determined that the input object contains data elements that,
when tokenized, correspond to all of the tokens for a
registered tuple, or correspond to a predetermined threshold
amount thereof, then the input object may be flagged as
containing a registered combination of data elements and
any suitable remediation actions may be taken.

Data Protection Workflow Tasks

FIGS. 19-24 illustrate various types of diagrams associ-
ated with an inventory task of the data protection workflows
system. FIG. 19 is a simplified interaction diagram 1900
illustrating potential operations that may be associated with
an inventory task of example embodiments of the data
protection workflows system of network environment 10.
FIGS. 20-23 illustrate example display screen diagrams that
may be presented during inventory task operations and will
be referenced herein to illustrate the interactions shown in
FIG. 19.

FIG. 19 illustrates presentation module 220, OLAP mod-
ule 210, and task module 224 of data manager 20, in addition
to crawl module 710 and inventory module 740 of discover
system 70. Initially, a display screen such as display screen
2000 of FIG. 20 can be presented to a user via presentation
module 220 offering options for initiating an inventory task
or a classification task. A registration task option may also
be presented, but selecting a registration task before an
inventory and/or classification task would require a user to
already have knowledge of which objects to register and a
location of the object to be registered. Enabling a workflow
that includes inventory and/or classification tasks being
performed prior to registration (and remediation) tasks
allows a user to have visibility into data in the network and
therefore, a better understanding of what objects need reg-
istration and/or remediation in order to appropriately protect
the data within the network.

Additionally, search query options (not shown) may also
be presented in the display screen. A search query presented
prior to a classification task may only be available for
searching capture databases (e.g., object store module 320 of
capture system 30). However, a search query option pre-
sented after a classification task may be available for search-
ing data in motion (e.g., object store modules 320 of capture
system 30) or data at rest (e.g., object store module 720 of
discover system 70).

In FIG. 19, a user can select desired parameters at 1905
to initiate an inventory task. As shown in the example
scenario of display screen 2000, an inventory task is selected
at 2002, a discover device titled ‘manganure-63.1ab.groupx-
.net’ is selected at 2004, and a content repository having an
IP address of 172.25.11.30 is selected at 2006. In other
scenarios, multiple discover devices may be selected, a
range of IP addresses may be selected, or one or more shares
of a server may be selected. Moreover, particular IP
addresses or shares may also be explicitly excluded from the
inventory task at 2008.

With reference again to the interaction diagram 1900, the
user can submit the parameter selections made in display
screen 2000 to task module 224 via 1905, by activating an
appropriate clickable on display screen 2000, or by invoking
any other suitably configured submission mechanism. Thus,
data manager 20 can receive user input to initiate an inven-

20

30

35

40

45

50

52

tory task. At 1910, the inventory task request including the
selected parameters can be communicated to crawl module
710 of selected discover system 70 (e.g., manganure-63.lab-
.groupx.net) via a control path. At 1915, crawl module 710
can crawl the selected content repository 40 (e.g., located at
IP address 172.25.11.30). At 1920, crawl module 710 can
provide information retrieved from content repository 40 to
inventory module 740; however, in some embodiments,
crawl module 710 and inventory module 740 may not be
logically distinct. At 1925, inventory module 740 can store
the information in metadata database 742. The information
can include, for example, sets of metadata elements of all
objects identified in the crawled content repository includ-
ing, for example, identifications of the content repository,
share, file type, file size, and owner associated with each
object.

An extract, transform, and load (ETL) process can be used
at 1930 to load central database 230 of data manager 20 with
metadata information of database 742. Sets of metadata
elements from multiple discover systems (e.g., distributed in
network environment 10) can be loaded in central database
230. At 1935, metadata elements from central database 230
can be provided to OLAP module 210, which can generate
an OLAP cube (or other appropriate structure) and populate
the cube with the metadata elements. OLAP module 210 can
also apply analytics to the OLAP cube and, at 1940, can
provide summaries of inventoried objects to presentation
module 220.

Presentation module 220 can present an analytic inven-
tory view of objects identified during the inventory task and
summarized by many dimensions. Objects represented in the
summaries of an analytic inventory view are referred to
herein as ‘inventoried objects.” The summaries of the inven-
tory view can include measures that quantify the inventoried
objects by various dimensions. In example embodiments,
measures include a total count and/or a total combined size
for all inventoried objects and/or for each displayed subset
of the inventoried objects.

In one implementation, an analytic view generated from
an inventory task could present a total count and total size
measure for all of the inventoried objects, for example, on a
first line of the analytic inventory view. Dimensions can be
displayed in the analytic inventory view from left to right in
a hierarchical order. For each dimension, a group of meta-
data elements (‘dimension group’) associated with all of the
inventoried objects could be represented, for example, by a
clickable. These clickables could be displayed such that the
dimension groups visually correspond to the total count and
total size measures (e.g., by displaying them on the same
line). In example implementations, each dimension group
includes metadata elements having the same metadata type
(e.g., devices, content repositories, shares, file types, own-
ers) represented by the corresponding dimension.

Any one or more of the dimension groups could be
selected by the user (e.g., by activating a clickable repre-
senting the selected dimension group), in order to drill down
and view specific metadata elements of each dimension
group and view corresponding measures of the metadata
elements. Accordingly, at 1940, a selected dimension group
can be communicated to OLAP module 210 and analytics
can be further applied to the OLAP cube to render specific
metadata elements for the selected dimension group and
corresponding measures.

At 1940, updated summaries can be provided back to
presentation module 220, which can present an updated
analytic inventory view to the user. The updated view can
include measures for each new subset of the inventoried

US 9,430,564 B2

53

objects represented in the updated view, where each new
subset corresponds to a specific metadata element of the
selected dimension group. In one embodiment, dimension
groups that are listed to the right of a selected dimension
group, and therefore, are lower than the selected dimension
group in the hierarchy of dimensions, can be subdivided into
multiple dimension groups, where each subdivided dimen-
sion group is associated with one of the metadata elements
of the selected dimension group. A user can continue to
select different dimension groups (including subdivided
dimension groups) in the analytic inventory views and the
flow of data at 1940 between presentation module 220 and
OLAP module 210 can occur any number of times.

In FIG. 21, an example analytic inventory view is shown
in display screen 2100, where device, task, repository, share,
and file type dimension groups have each been sequentially
selected by a user and drilled down to specific metadata
elements within those dimension groups. Specifically, a
device dimension group 2101 includes a single device
element (i.e., manganure-63.1ab.groupx.net). A task dimen-
sion group 2103 (associated with the manganure-63.1ab-
.groupx.net device) includes four task elements (i.e., three
classification tasks and one inventory task). A repositories
dimension group 2105 (associated with the Inventory task
and the manganure-63.1ab.groupx.net device) includes a
single repository element (i.e., DIANA). A shares dimension
group 2107 (associated with the DIANA repository, the
Inventory task, and the manganure-63.1ab.groupx.net
device) includes a single share element (i.e., Discover Test-
ing). A file types dimension group 2109 (associated with the
Discover Testing share, the DIANA repository, the Inven-
tory task, and the manganure-63.lab.groupx.net device)
includes eight file type elements (i.e., pdf, doc, xls,
<unknown>, marker, html, ¢, and cpp). In the example
display screen 2100, however, additional file types may not
be visible as a user may need to scroll down on a display
device, such as a computer monitor, to see them. An owners
dimension group corresponding to file types dimension
group 2109 is subdivided into eight file types dimension
groups, each corresponding to one of the specific file type
elements.

As shown in FIG. 21, measures 2113 can be displayed for
all inventoried objects presented in the inventory view. The
first line in the inventory view indicates that a total of
2,920,688 inventoried objects having a total combined size
of 805,407,684,077 KB are presented and summarized by
dimensions. The summaries can also include measures 2113
(i.e., some type of quantification such as count and/or total
file size) displayed for subsets of the inventoried objects. A
subset of the inventoried objects (or classified objects in a
classification view) can be defined by a hierarchical path, as
shown in an analytic view (inventory or classification), from
a higher dimension to a lower dimension (e.g., from left to
right) in which the path has levels corresponding to the
dimensions. Each level in the path includes either a dimen-
sion group (or subdivided dimension group) or a single
metadata element of a dimension group, and at least one of
the levels in the path includes a single metadata element.
Each object of the subset is characterized by (and therefore,
associated with) the dimension groups and the specific
metadata elements in the path.

An example hierarchical path can be illustrated with
reference to line 2117 in display screen 2100. One subset of
the inventoried objects, represented in line 2117, has a total
count of 753 objects and a total size of 1,850,173,069 KB.
A hierarchical path of dimensions associated with the subset
includes a specific device element (i.e., the manganure-

10

15

20

25

30

35

40

45

50

55

60

65

54

63.1ab.groupx.net device), a specific task element (i.e., the
Inventory task), a specific repository element (i.e., the
DIANA repository), a specific share element (i.e., the Dis-
cover Testing share), a specific file type element (i.e., the pdf
file type), and a dimension group (i.e., subdivided owner
dimension group 2111). Thus, in this example, the analytic
view can provide a user with the knowledge that there are
753 pdf documents in Discover Testing share of DIANA
repository that were identified during an Inventory task by
manganure-63.lab.groupx.net discover device and that the
combined size of the 753 pdf documents is 1,850,173,069
KB. Any owners could be associated with the pdf docu-
ments.

In display screen 2100, a user may continue to drill down
by selecting subdivided owner dimension groups associated
with each of the file type elements. By selecting a subdi-
vided owner dimension group corresponding to one of the
file type elements, a user could view all of the owners
associated with the particular file type. In addition, respec-
tive count and size measures could be displayed for new
subsets of the inventoried objects (created by selecting
owner dimension group 2111), in which each new subset is
associated with a different one of the owners of the selected
file type, and in which each new subset is also associated
with the Discover Testing share element, the DIANA reposi-
tories element, the Inventory task element, and the manga-
nure-63.1ab.groupx.net device element.

The data protection workflows system may also allow a
user to filter and scope what is displayed in analytic views
(inventory or classification), and to change the hierarchical
order of the dimensions (e.g., by selecting a different dimen-
sion as the starting dimension or top of the hierarchy). The
user can activate OLAP icon 2115 (e.g., by clicking on the
icon using a mouse, by highlighting the icon and hitting
‘enter’ on a keyboard) and then select which dimension to
use as the starting dimension and filter the view. For
example, the analytic inventory view of display screen 2100
of FIG. 21 shows a device dimension as the starting dimen-
sion. Once the user activates OLAP icon 2115, the user can
select another dimension to be the starting dimension, and
can also apply filters to view only selected data and/or
selected dimensions.

In the example display screen 2200 of FIG. 22, a new
analytic inventory view is illustrated with a new starting
dimension and applied filters. In the new analytic inventory
view, the file type dimension has been selected as the
starting dimension and filters have been applied such that
only data related to C and C++ source code files is displayed.
In addition, the device, repository, and task dimensions have
been filtered or sliced out. Thus, the starting dimension is a
file type (or ‘Extension Type’) dimension 2209, and only the
filtered file type elements (i.e., C and C++ file types) are
displayed. A share dimension 2207 and owner dimension
2211 are included in the analytic inventory view, along with
measures 2213 of the C and C++ objects. Also shown in
FIG. 22 is the create task option 2202 to allow a user to
select remediation, registration, or classification tasks based
on the inventory view presented. Thus, by selecting one of
the task options, the filtered information displayed in the
analytic inventory view can be automatically populated in a
subsequent display screen to allow a user to potentially
refine and initiate the selected task.

In another example, shown in display screen 2300 of FIG.
23, device, repository, and task dimensions are filtered or
sliced out and the owner dimension has been selected as the
starting dimension. Without a filter for particular metadata
elements of a dimension group, all metadata elements of the

US 9,430,564 B2

55

dimension group can be displayed. Thus, in the analytic
view of display screen 2300 all owners of owner dimension
group 2311 are listed. Measures 2313 shown on the first line
of'the inventory view can reflect the total count and total size
of all inventoried objects presented in the inventory view.
Other count and size measures in FIG. 23 represent subsets
of the inventoried objects associated with either 1) a corre-
sponding specific owner and any share and file type or 2) a
corresponding specific owner, any share, and a correspond-
ing specific file type (i.e., Englishtext or Ascii).

FIGS. 24A-C are graphical diagrams illustrating potential
graphical representations of data based on specific metadata
elements of various dimension groups. FIG. 24A illustrates
a display screen 2400 in which a pie chart 2405 illustrates
the distribution of objects across eight different shares of a
particular content repository having an IP address of
10.60.73.16. In one embodiment, if a curser is used to hover
over a particular slice of pie chart 2405, other analytic data
may be presented in a pop-up such as a total count of objects
(or records) in the particular share.

FIG. 248 illustrates a display screen 2410 in which a bar
graph 2415 illustrates a total count of objects (records) for
each file type. In one embodiment, if a curser is used to
hover over a particular bar, other analytic data associated
with that particular file type may be presented in a pop-up
such as, share and total count of the number of objects in the
share.

FIG. 24C illustrates a display screen 2420 in which
another bar graph 2425 represents a total count of objects for
each share. Each bar is shaded to represent counts of each
file type on the share represented by the bar. For example in
the share named PROJECT-Budget_Engr, the largest major-
ity of file types is xIs (e.g., approximately 1700). Addition-
ally, the shaded bar indicates that the PROJECT-Bud-
get_Engr share includes approximately 100 Word
documents.

FIGS. 25-31 illustrate various types of diagrams associ-
ated with a classification task of the data protection work-
flows system. FIG. 25 is a simplified interaction diagram
2500 illustrating potential operations that may be associated
with a classification task of example embodiments of the
data protection workflows system of network environment
10. FIGS. 26-31 illustrate display screen diagrams that may
be presented during classification task operations and will be
referenced herein to illustrate the interactions shown in FIG.
25.

FIG. 25 illustrates presentation module 220, OLAP mod-
ule 210, and task module 224 of data manager 20, in addition
to crawl and fetch module 711 and content classification
module 750 of discover system 70. A classification task can
be independently instantiated as shown in display screen
2600 of FIG. 26, which is a partial view showing a mode
2602 with ‘classification’ selected. A classification task can
also be created over an inventory or classification view, as
shown in display screen 2700 of FIG. 27, which is a partial
view of an example analytic inventory view showing create
task options 2702 with ‘classification’ option highlighted.
These display screens 2600 and 2700 can be presented to a
user by presentation module 220, for example, on user
system 22.

A user can select desired parameters at 2505 to initiate a
classification task. As shown in the example scenario of
display screen 2600 of FIG. 26, a classification task is
selected at 2602. In addition, one or more discover devices,
one or more content repositories, and/or one or more shares
of a server may be selected for an independently instantiated
classification task. Certain content repositories or shares

10

20

25

30

40

45

60

56

may also be explicitly excluded from the classification task.
Additionally, a user may select particular categories (or
concepts) or sets of categories for the classification task. In
other scenarios, a user may simply rely on default categories
for a classification task.

Display screen 2700 of FIG. 27 illustrates that a classi-
fication task can be created over an analytic inventory view.
The user can select ‘classification’ from create task options
2702 and the data displayed in the inventory view can
automatically populate a subsequent display screen (e.g.,
display screen 2600) in which the user is allowed to refine
the parameters (if desired) for the classification task and
initiate the classification task.

With reference again to the interaction diagram 2500, the
user can submit user selections to task module 224 via 2505,
by activating an appropriate clickable on display screen
2600 or by invoking any other suitably configured submis-
sion mechanism. Thus, data manager 20 can receive user
input to initiate a classification task. At 2510, the classifi-
cation task request including the selected parameters can be
communicated to crawl and fetch module 711 of selected
discover system 70 via a control path. At 2515, crawl and
fetch module 711 can crawl selected content repository 40
and fetch identified objects. At 2520, crawl and fetch module
711 can provide the fetched objects from content repository
40 to content classification module 750. Content classifica-
tion module 750 can evaluate each fetched object and
classify the object based on one or more selected or default
categories. At 2525, content classification module 750 can
store object category information and metadata elements
(e.g., metadata) for the fetched and classified objects in
category information database 752. The stored information
can include, for example, sets of metadata elements of all
objects identified in and fetched from the crawled content
repository including, for example, identifications of the
content repository, share, file type, file size, and owner
associated with each object. Additionally, the stored infor-
mation can also include each category associated with each
object.

An extract, transform, and load (ETL) process can be used
at 2530 to load central database 230 of data manager 20 with
information from category information database 752. Object
category information and metadata elements from multiple
discover systems (e.g., distributed in network environment
10) can be loaded in central database 230. At 2535, catego-
ries and metadata elements from central database 230 can be
provided to OLAP module 210, which can generate an
OLAP cube (or other appropriate structure) and populate the
cube with the categories and metadata elements. OLAP
module 210 can also apply analytics to the OLAP cube and,
at 2540, can provide summaries of classified objects to
presentation module 220.

Presentation module 220 can present a classification view
of objects identified during a classification task and sum-
marized by many dimensions. Objects represented in the
summaries of a classification view are referred to herein as
‘classified objects.” The summaries of the classification view
can include measures that quantify the classified objects by
categories and other various dimensions. In example
embodiments, measures include a total count and total
combined size for each displayed subset of classified
objects, where each subset is associated with a particular
category.

In one implementation, a classification view generated
from a classification task, or possibly a search query, could
present a total count and total size measure for all of the
classified objects in a category, for example, on a first line

US 9,430,564 B2

57

corresponding to the category. Respective total count and
total size measures could be provided for all categories
displayed in the analytic classification view. Dimensions
(e.g., representing types of metadata) can be displayed in the
analytic classification view from left to right in hierarchical
order after each category. For each dimension, a dimension
group associated with the classified objects in the category
could be represented, for example, by a clickable. These
clickables could be displayed to make it apparent that the
dimension groups correspond to the total count and total size
measures of classified objects in the category (e.g., by
displaying them on the same line). In example implemen-
tations, a dimension group represents metadata elements
having the same metadata type represented by the corre-
sponding dimension.

Any one or more of the dimension groups could be
selected by the user (e.g., by activating a clickable repre-
senting the selected dimension group), in order to drill down
and view specific metadata elements of each dimension
group and view corresponding measures of subsets associ-
ated with the respective metadata elements. Accordingly, at
2540, a selected dimension group can be communicated to
OLAP module 210 and analytics can be further applied to
the OLAP cube to render specific metadata elements for the
selected dimension group and corresponding measures.

At 2540, updated summaries can be provided back to
presentation module 220, which can present an updated
classification view to the user. The updated view can include
measures for each new subset of classified objects in a
category that are represented in the updated view, where
each new subset corresponds to a specific metadata element
of'the selected dimension group. In one embodiment, dimen-
sion groups that are listed to the right of a selected dimen-
sion group, and therefore, are lower than the selected
dimension group in the hierarchy of dimensions, can be
subdivided into multiple dimension groups in the same
manner as in analytic inventory views, previously described
herein. A user can continue to select different dimension
groups (including subdivided dimension groups) in the
analytic classification views. Thus, the flow of data at 2540
between presentation module 220 and OLAP module 210
can occur any number of times.

In the example screen display 2800 of F1G. 28, an analytic
classification view is shown with share, file type, and owner
dimensions provided for each category 2810. Other dimen-
sions (e.g., device, content repository, task) are filtered out
in this view, but may be included in other views. Measures
2813 are provided for each category and can include all
classified objects associated with the respective category.
For example, a total of 4,978 objects (out of all of the objects
identified and fetched during the classification task) with a
total combined size of 222,198,994 KB, were classified as
‘Board Meeting Minutes’ documents. Any of the dimension
groups shown (i.e., share, file type, or owner) corresponding
to any category (e.g., ‘Board Meeting Minutes’ category)
can be selected to drill down to specific metadata elements
within those dimension groups. Selecting dimension groups
to drill down to specific metadata elements can function as
described with reference throughout this specification and
particularly with reference to FIG. 21.

In display screen 2900 of FIG. 29, the file type and owner
dimensions have been filtered out and shares dimension
group 2907, associated with the Board Meeting Minutes
category 2910, has been selected by a user and drilled down
to view specific metadata elements (i.e., specific shares from
which the ‘Board Meeting Minutes’ objects were fetched).
By selecting shares dimension 2907, the user can view all of

15

30

35

40

45

55

60

58

the shares containing objects classified as ‘Board Meeting
Minutes’ objects, in addition to measures 2913 (e.g., total
count and total size) for those objects on each of the shares.
For example, there are 1838 documents classified as ‘Board
Meeting Minutes’ documents in the mil_1 share and the
combined size of those objects is 30,431,190 KB.

In display screen 3000 of FIG. 30, from the analytic
classification view of FIG. 28, the user has filtered out the
file type dimension and drilled down on owner dimension
group 3011 corresponding to ‘Board Meeting Minutes’
category 3010. By selecting owner dimension 3011, the user
can view all of the owners of objects classified as ‘Board
Meeting Minutes’ objects, in addition to measures 3013
(e.g., total count and total size) for those objects for each
owner. For example, there are 4850 objects classified as
‘Board Meeting Minutes’ objects having an owner identified
as BUILTIN/Administrators and the combined total size of
those objects is 219,942,802 KB.

In display screen 3100 of FIG. 31, from the analytic
classification view of FIG. 28, the user has filtered out the
owner dimension and drilled down on share dimension
group 3107 associated with ‘California Drivers License
Law’ category 3110. In addition, the user may have filtered
out other categories from the view. The user has also drilled
down on each of the file type dimension groups 3109a,
31095, 3109¢, and 31094 corresponding to share dimension
group 3107 and each of the specific metadata elements of
share dimension group 3107 (e.g., mil_1, mil_0, mil_5).
These selections enable the user to view all of the file types
of objects on each server share that are classified as ‘Cali-
fornia Drivers License Law’ objects. Specifically, these
classified objects are found on three shares (i.e., mil_1,
mil_0, and mil_5) and the classified objects on each of those
shares comprise three different file types (i.e., MSWord,
PDF, and Excel). Additional shares and corresponding file
types may be visible if a user scrolls down display screen
3100. Finally, measures 3113 (e.g., total count and total size)
for these classified objects may be displayed. For example,
there are 329 pdf documents, classified as ‘California Driv-
ers License Law’ objects, on mil_0 share, having a total
combined size of 3,682,458 KB.

FIGS. 32-34 illustrate various types of diagrams associ-
ated with a remediation task of the data protection work-
flows system. FIG. 32 is a simplified interaction diagram
3200 illustrating potential operations that may be associated
with a remediation task of example embodiments of the data
protection workflows system of network environment 10.
FIGS. 33 and 34 illustrate display screen diagrams that may
be presented during remediation task operations and will be
referenced herein to illustrate the operations of interaction
diagram 3200 of FIG. 32.

FIG. 32 illustrates presentation module 220, OLAP mod-
ule 210, and task module 224 of data manager 20, in addition
to crawl and fetch module 711 and remediation module 760
of discover system 70. A remediation task can be created
over an analytic inventory or classification view. This is
illustrated in FIG. 31, in which ‘Remediation’ is selected in
a create task option 3102 for the classification view shown
in display screen 3100. Similarly, this is illustrated in FIG.
22 in which ‘Remediation’ is selected in a create task option
2202 for the inventory view shown in display screen 2200.
Once the user selects the remediation option from an inven-
tory or classification view, by activating an appropriate
clickable on the display screen or by invoking any other
suitably configured submission mechanism, subsequent dis-
play screens can be displayed for the user to further refine
and initiate the remediation task.

US 9,430,564 B2

59

FIG. 33 illustrates one example of a display screen 3300
that may be presented to a user to refine a remediation task.
Remediation task parameters of display screen 3300 may be
populated with metadata elements from the selected analytic
view (e.g., classification view of display screen 3100) such
as categories 3310 and file types 3309 defining one or more
subsets of the classified (or inventoried) objects to be
remediated. The user can refine the remediation task for
example, by selecting or deselecting particular file types
and/or categories associated with objects to be remediated.
In addition, one or more remediation policies 3314 (e.g.,
State Privacy Laws/California Drivers License Law) can be
selected to be applied to objects of the one or more selected
subsets.

FIG. 34 illustrates another example of a display screen
3400 that may be presented to a user to refine a remediation
task. In the example scenario shown in display screen 3400,
parameters (or filters) may be refined for various dimensions
associated with the objects of the selected analytic view
(e.g., classification view of display screen 3100). In addi-
tion, various conditions (e.g., exact match, equals, etc.) may
be defined for each parameter. For example, share param-
eters 3407 may be created for shares that are exact matches
to mil_1, mil_0, and mil 5. In another example, a file
properties parameter 3409 may be created for a file exten-
sion that equals ‘.doc’ (i.e., MSWord documents). A device
parameter 3401 (e.g., manganure-63.]ab.groupx.net) may
also be populated from the selected analytic view. In addi-
tion, although not shown in FIG. 34 other metadata elements
such as the associated content repositories can also auto-
matically populate remediation task parameters.

With reference again to interaction diagram 3200 of FIG.
32, the remediation display screens (e.g., display screen
3300 and 3400) may be presented to the user via presenta-
tion module 220. The user can submit selections made in the
display screens to task module 224 via 3205, by activating
an appropriate clickable on display screens 3300 or 3400, or
by invoking any other suitably configured submission
mechanism. Thus, data manager 20 can receive user input to
initiate a remediation task. At 3210, the remediation task
request including the selected parameters can be communi-
cated to crawl and fetch module 711 of selected discover
system 70 (e.g., manganure-63.lab.groupx.net) via a control
path. At 3215, crawl and fetch module 711 can crawl
selected content repository 40 using selected parameters to
identify targeted objects. Depending on the particular reme-
diation policy (and action to be taken), crawl and fetch
module 711 may fetch identified objects (e.g., if an object is
to be encrypted, moved, etc.)

At 3220, crawl and fetch module 711 can provide the
fetched object and/or information retrieved from content
repository 40 to remediation module 760. Remediation
module 760 applies the selected remediation policy to
targeted objects. For example, if the remediation policy
requires targeted objects to be deleted, remediation module
760 deletes the identified objects from content repository via
3225. If the remediation policy requires the targeted objects
to be encrypted, then remediation module 760 encrypts the
fetched objects and stores the encrypted objects back in
content repository 40, as indicated at 3225. At 3230, infor-
mation related to remediation performed by remediation
module 760 may be stored in remediation incidents list 762.
In one embodiment, the incidents may be presented to the
user via a dashboard for example, on user system 22.

FIGS. 35-36 illustrate various types of diagrams associ-
ated with a registration task of the data protection workflows
system of network environment 10. FIG. 35 is a simplified

10

15

20

25

30

35

40

45

50

55

60

65

60

interaction diagram 3500 illustrating potential operations
that may be associated with a registration task of example
embodiments of the data protection workflows system of
network environment 10. FIG. 36 illustrates a display screen
diagram 3600 that may be presented during registration task
operations and will be referenced herein to illustrate the
operations explained with reference to interaction diagram
3500 of FIG. 35.

FIG. 35 illustrates presentation module 220 and task
module 224 of data manager 20, in addition to crawl and
fetch module 711 and registration system 770 of discover
system 70. A registration task can be created over an analytic
inventory or classification view. This is illustrated in FIG.
22, in which ‘Registration’ is listed as one of the create task
options 2202 for the inventory view shown in display screen
2200. Once the user selects the registration option from an
inventory or classification view, at least one subsequent
display screen can be displayed for the user to further refine
the registration task.

Display screen 3600 of FIG. 36 illustrates one example of
a display screen that may be presented to a user to refine a
registration task. Registration task parameters of display
screen 3600 may be populated with metadata elements from
the selected analytic view (e.g., inventory view of display
screen 2200) such as and file type 2209, share 2207, and
owner 2211, defining one or more subsets of the inventoried
objects to be registered. The user can refine the registration
task for example, by selecting or deselecting particular file
types, shares, and/or owners associated with objects to be
registered.

In the example scenario shown in display screen 3600,
parameters (or filters) may be refined for various dimensions
associated with the objects of the selected analytic inventory
or classification view (e.g., inventory view of display screen
2200). In addition, various conditions (e.g., exact match,
equals, etc.) may be defined for each parameter. For
example, a share parameter 3607 may be for a share that is
an exact match to Discover Testing. In another example, file
properties parameters 3609 may be created for file exten-
sions that equal ‘.c’ or ‘“.cpp.” A particular device parameter
3601 (e.g., manganure-63.1ab.groupx.net) may also be popu-
lated from the selected analytic view. In addition, although
not shown in FIG. 36 other metadata elements such as the
associated content repositories can also automatically popu-
late registration task parameters.

With reference again to interaction diagram 3500 of FIG.
35, the registration display screen (e.g., display screen 3600)
may be presented to the user via presentation module 220.
The user can submit the selections made in the display
screen to task module 224 via 3505, by activating an
appropriate clickable on display screen 3600, or by invoking
any other suitably configured submission mechanism. Thus,
data manager 20 can receive user input to initiate a regis-
tration task. At 3510, the registration task request including
the selected parameters can be communicated to crawl and
fetch module 711 of selected discover system 70 (e.g.,
manganure-63.lab.groupx.net) via a control path. At 3515,
crawl and fetch module 711 can crawl a selected share (e.g.,
Discover Testing) of content repository 40 using selected
parameters to identify targeted objects. Crawl and fetch
module 711 may fetch identified objects (e.g., objects to be
registered). At 3520, crawl and fetch module 711 can
provide the fetched object and/or information retrieved from
content repository 40 to registration system 770, which can
register the fetched objects. During the registration process,
registration system 770 updates registration database 772,
including registration list 774 and index table 776, at 3530,

US 9,430,564 B2

61

which can be used by a detection system to determine
whether an object contains at least a portion of registered
content. In one embodiment, information related to the
registrations may be presented to the user via a dashboard
for example, on user system 22.

Software for achieving the data protection workflows
operations outlined herein can be provided at various loca-
tions (e.g., the corporate IT headquarters, network appli-
ances distributed in a network, etc.). In some embodiments,
this software could be received or downloaded from a web
server (e.g., in the context of purchasing individual end-user
licenses for separate networks, devices, servers, etc.) in
order to provide this system for providing data protection
workflows. In one example implementation, this software is
resident in one or more network elements sought to be
protected from a security attack (or protected from unwanted
or unauthorized manipulations of data).

In various examples, the software of the system for
providing data protection workflows in a computer network
environment could involve a proprietary element (e.g., as
part of a network security solution with McAfee® Network
Data Loss Prevention (NDLP) products such as DLP Dis-
cover, DLP Monitor, DLP Prevent, and DLP Manager prod-
ucts, etc.), and could be provided in (or be proximate to)
these identified elements, or be provided in any other device,
server, network appliance, console, firewall, switch, infor-
mation technology (IT) device, etc., or be provided as a
complementary solution (e.g., in conjunction with a fire-
wall), or provisioned somewhere in the network.

Any of the elements of FIG. 1 can include memory for
storing information to be used in achieving the operations as
outlined herein. Such memory can include any suitable
memory element (random access memory (RAM), read only
memory (ROM), erasable programmable ROM (EPROM),
electrically erasable programmable ROM (EEPROM),
application specific integrated circuit (ASIC), etc.), soft-
ware, hardware, or in any other suitable component or
device, where appropriate and based on particular needs.
Any of the memory items discussed herein (e.g., memory
elements 208, 308, and 708, content repositories 40, central
database 230, object search database 316, object store mod-
ules 320 and 720, indexes 334 and 336, metadata database
742, category information database 752, remediation inci-
dents list 762, registration list 774, index table 776, object
search database 716, etc.) should be construed as being
encompassed within the broad term ‘memory element.’
Moreover, information and data being tracked or sent
through network environment 10 could be provided in any
database, register, table, index, control list, cache, or storage
structure, all of which can be referenced at any suitable
timeframe. Any such storage options may also be included
within the broad term ‘memory element’ as used herein.

In certain example implementations, some or all of these
elements (e.g., discover systems 70, capture systems 30,
data manager 20) include software (or reciprocating soft-
ware) that can coordinate, manage, or otherwise cooperate in
order to achieve the data protection workflows operations, as
outlined herein. One or more of these elements may include
any suitable algorithms, hardware, software, components,
modules, interfaces, or objects that facilitate the operations
thereof. In the implementations involving software, such a
configuration may be inclusive of logic encoded in one or
more tangible, non-transitory media (e.g., embedded logic
provided in an application specific integrated circuit (ASIC),
digital signal processor (DSP) instructions, software (poten-
tially inclusive of object code and source code) to be
executed by a processor, or other similar machine, etc.). In

10

15

20

25

30

35

40

45

50

55

60

65

62

some of these instances, one or more memory elements (e.g.,
memory elements 208, 308, 708) can store data used for the
operations described herein. This includes the memory ele-
ment being able to store software, logic, code, or processor
instructions that are executed to carry out the activities
described in this Specification.

Additionally, these elements may include a processor
(e.g., 206, 306, 706) that can execute software or an algo-
rithm to perform the activities as discussed in this Specifi-
cation. A processor can execute any type of instructions
associated with the data or information to achieve the
operations detailed herein in this Specification. In one
example, the processor could transform an element or an
article (e.g., data) from one state or thing to another state or
thing. In another example, the activities outlined herein may
be implemented with fixed logic or programmable logic
(e.g., software/computer instructions executed by a proces-
sor) and the elements identified herein could be some type
of a programmable processor, programmable digital logic
(e.g., a field programmable gate array (FPGA), an erasable
programmable read only memory (EPROM), an electrically
erasable programmable read only memory (EEPROM)), or
an ASIC that includes digital logic, software, code, elec-
tronic instructions, or any suitable combination thereof.

Any of the potential processing elements (e.g., processors
206, 306, 706), modules, and machines described in this
Specification should be construed as being encompassed
within the broad term ‘processor.” Each of the network
elements may also include suitable interfaces for receiving,
transmitting, and/or otherwise communicating data or infor-
mation in a network environment.

These elements, modules and components can cooperate
with each other in order to perform the activities in connec-
tion with the data protection workflows system as discussed
herein. In other embodiments, certain features may be
provided external to the elements, included in other devices
to achieve these intended functionalities, or consolidated in
any appropriate manner. For example, some of the proces-
sors (e.g., processors 206, 306, 706) associated with the
various elements may be removed, or otherwise consoli-
dated such that a single processor and a single memory
location are responsible for certain activities. In a general
sense, the arrangements depicted in FIGS. 1-4 and 7 may be
more logical in their representations, whereas a physical
architecture may include various permutations, combina-
tions, and/or hybrids of these elements, modules, and com-
ponents.

Note that with the numerous examples provided herein,
interaction may be described in terms of two, three, four, or
more network elements and modules. However, this has
been done for purposes of clarity and example only. It
should be appreciated that the system can be consolidated in
any suitable manner. Along similar design alternatives, any
of the illustrated modules, components, and elements of
FIG. 1 may be combined in various possible configurations,
all of which are clearly within the broad scope of this
Specification. In certain cases, it may be easier to describe
one or more of the functionalities of a given set of flows by
only referencing a limited number of network elements. It
should be appreciated that the system of FIG. 1 (and its
teachings) is readily scalable and can accommodate a large
number of components, as well as more complicated/sophis-
ticated arrangements and configurations. Accordingly, the
examples provided should not limit the scope or inhibit the
broad teachings of data protection workflows system as
potentially applied to a myriad of other architectures.

US 9,430,564 B2

63

It is also important to note that the operations described
with reference to the preceding FIGURES illustrate only
some of the possible scenarios that may be executed by, or
within, the system. Some of these operations may be deleted
or removed where appropriate, or these steps may be modi-
fied or changed considerably without departing from the
scope of the discussed concepts. In addition, the timing of
these operations may be altered considerably and still
achieve the results taught in this disclosure. The preceding
operational flows have been offered for purposes of example
and discussion. Substantial flexibility is provided by the
system in that any suitable arrangements, chronologies,
configurations, and timing mechanisms may be provided
without departing from the teachings of the discussed con-
cepts.

What is claimed is:

1. One or more non-transitory computer readable media
that includes code for execution that, when executed by one
or more processors, causes the one or more processors to:

receive a plurality of sets of metadata elements represent-

ing a plurality of objects, respectively, wherein the
objects of the plurality of objects are classified by a
classification module evaluating contents of the objects
to determine classifications based on one or more
categories, wherein an object is classified based on a
particular category if the object contains content cor-
responding to at least one concept associated with the
particular category;

generate a summary of the plurality of objects including:

a total category count representing a total number of
objects classified based on the particular category;

one or more sets of dimension groups corresponding
respectively to the one or more categories, wherein
the dimension groups of each set of dimension
groups correspond to respective metadata dimen-
sions that represent respective types of metadata;

provide, for display on a display screen of a computer, a

classification view of the classified objects, wherein the
classification view includes the summary of the plural-
ity of objects;
receive a request to manipulate the classification view to
subdivide the total category count into two or more
subset counts based on a selected dimension group;

generate the two or more subset counts corresponding
respectively to two or more subsets of the objects
classified based on the particular category, wherein
each subset is defined by a respective hierarchical path
in a hierarchical arrangement formed by the particular
category and at least the metadata dimensions of the
selected dimension group, and wherein each subset
includes objects associated with a different metadata
element of the selected dimension group;

provide, for display on the display screen, a manipulated

classification view including the two or more subset
counts and the hierarchical path for each corresponding
subset;

receive a request from a user to perform a protection task

on objects of a selected subset of the two or more
subsets; and

initiate the protection task for the objects of the selected

subset.

2. The one or more non-transitory computer readable
media of claim 1, further comprising:

creating an Online Analytical Processing (OLAP) data

structure to represent the plurality of sets of metadata
elements and the one or more categories, wherein each
of the one or more categories is associated with at least
one of the plurality of objects,

10

15

20

25

30

35

40

45

50

55

60

65

64

wherein the summary is generated from the OLAP data

structure.

3. The one or more non-transitory computer readable
media of claim 1, wherein the types of metadata include one
or more of devices, content repositories, shares, file types,
file sizes, and owners.

4. The one or more non-transitory computer readable
media of claim 1, wherein the request to manipulate is
associated with a user selecting the selected dimension
group that corresponds to the particular category.

5. The one or more non-transitory computer readable
media of claim 1, wherein the summary of the plurality of
objects further includes one or more total sizes, each total
size based on a combination of sizes of objects classified
according to one of the one or more categories.

6. The one or more non-transitory computer readable
media of claim 1, wherein the code, when executed by the
one or more processors, causes the one or more processors
to:

receive a selection from a user specifying the data storage

location to be searched for the plurality of objects based
on the category.

7. The one or more non-transitory computer readable
media of claim 6, wherein the data storage location includes
one or more content repositories.

8. The one or more non-transitory computer readable
media of claim 6, wherein the data storage location includes
a share of a content repository.

9. The one or more non-transitory computer readable
media of claim 1, wherein the protection task includes one
of a remediation task to remediate each one of the objects of
the selected subset and a registration task to register each
one of the objects of the selected subset.

10. The one or more non-transitory computer readable
media of claim 1, wherein the summary of the plurality of
objects further includes each category of the one or more
categories forming a respective hierarchical arrangement
with the metadata dimensions.

11. A method to be executed by a processor in a network
environment, the method comprising:

receiving a plurality of sets of metadata elements repre-

senting a plurality of objects, respectively, wherein the
objects of the plurality of objects are classified by a
classification module evaluating contents of the objects
to determine classifications based on one or more
categories, wherein an object is classified based on a
particular category if the object contains content cor-
responding to at least one concept associated with the
particular category;

generating a summary of the plurality of objects includ-

ing:

a total category count representing a total number of
objects classified based on the particular category;

one or more sets of dimension groups corresponding
respectively to the one or more categories, wherein
the dimension groups of each set of dimension
groups correspond to respective metadata dimen-
sions that represent respective types of metadata;

providing, for display on a display screen of a computer,

a classification view of the classified objects, wherein

the classification view includes the summary of the

plurality of objects;

receiving a request to manipulate the classification view

to subdivide the total category count into two or more
subset counts based on a selected dimension group;
generating the two or more subset counts corresponding
respectively to two or more subsets of the objects
classified based on the particular category, wherein
each subset is defined by a respective hierarchical path
in a hierarchical arrangement formed by the particular

US 9,430,564 B2

65

category and at least the metadata dimensions of the
selected dimension group, and wherein each subset
includes objects associated with a different metadata
element of the selected dimension group;

providing, for display on the display screen, a manipu-

lated classification view including the two or more
subset counts and the hierarchical path for each corre-
sponding subset;

receiving a request from a user to perform a protection

task on objects of a selected subset of the two or more
subsets; and

initiating the protection task for the objects of the selected

subset.

12. The method of claim 11, further comprising:

create an Online Analytical Processing (OLAP) data

structure to represent the plurality of sets of metadata
elements and the one or more categories, wherein each
of the one or more categories is associated with at least
one of the plurality of objects,

wherein the summary is generated from the OLAP data

structure.

13. The method of claim 11, wherein the protection task
includes one of a remediation task to remediate each one of
the objects of the selected subset and a registration task to
register each one of the objects of the selected subset.

14. An apparatus, comprising:

a memory element configured to store data; and

one or more processors operable to execute instructions

associated with the data, wherein the processor and the

memory element cooperate such that the apparatus is

configured to:

receive a plurality of sets of metadata elements repre-
senting a plurality of objects, respectively, wherein
the objects of the plurality of objects are classified by
a classification module evaluating contents of the
objects to determine classifications based on one or
more categories, wherein an object is classified
based on a particular category if the object contains
content corresponding to at least one concept asso-
ciated with the particular category;

generate a summary of the plurality of objects includ-
ing:
a total category count representing a total number of

objects classified based on the particular category;

15

20

30

40

66

one or more sets of dimension groups corresponding
respectively to the one or more categories,
wherein the dimension groups of each set of
dimension groups correspond to respective meta-
data dimensions that represent respective types of
metadata;
provide, for display on a display screen of a computer,
a classification view of the classified objects,
wherein the classification view includes the sum-
mary of the plurality of objects;
receive a request to manipulate the classification view
to subdivide the total category count into two or
more subset counts based on a selected dimension
group;
generate the two or more subset counts corresponding
respectively to two or more subsets of the objects
classified based on the particular category, wherein
each subset is defined by a respective hierarchical
path in a hierarchical arrangement formed by the
particular category and at least the metadata dimen-
sions of the selected dimension group, and wherein
each subset includes objects associated with a dif-
ferent metadata element of the selected dimension
group;
provide, for display on the display screen, a manipu-
lated classification view including the two or more
subset counts and the hierarchical path for each
corresponding subset;
receive a request from a user to perform a protection
task on objects of a selected subset of the two or
more subsets; and
initiate the protection task for the objects of the selected
subset.

15. The apparatus of claim 14, wherein the request to
manipulate is associated with a user selecting the selected
dimension group that corresponds to the particular category.

16. The apparatus of claim 14, wherein the protection task
includes one of a remediation task to remediate each one of
the objects of the selected subset and a registration task to
register each one of the objects of the selected subset.

17. The apparatus of claim 14, wherein the summary of
the plurality of objects further includes each category of the
one or more categories forming a respective hierarchical
arrangement with the metadata dimensions.

#* #* #* #* #*

